Ultra-wide field-of-view flat optics

    公开(公告)号:US10979635B2

    公开(公告)日:2021-04-13

    申请号:US16894945

    申请日:2020-06-08

    Abstract: Wide-angle optical functionality is beneficial for imaging and image projection devices. Conventionally, wide-angle operation is attained by a complicated assembly of optical elements. Recent advances have led to meta-surface lenses or meta-lenses, which are ultra-thin planar lenses with nanoantennas that control the phase, amplitude, and/or polarization of light. Here, we present a meta-lens capable of diffraction-limited focusing and imaging over an unprecedented >170° angular field of view (FOV). The lens is integrated on a one-piece flat substrate and includes an aperture on one side and a single meta-surface on the other side. The meta-surface corrects third-order Seidel aberrations, including coma, astigmatism, and field curvature. The meta-lens has a planar focal plane, which enables considerably simplified system architectures for imaging and projection. The meta-lens design is generic and can be readily adapted to different meta-atom geometries and wavelength ranges to meet diverse application demands.

    Apparatus, Systems, and Methods for On-Chip Spectroscopy Using Optical Switches

    公开(公告)号:US20190331529A1

    公开(公告)日:2019-10-31

    申请号:US16506142

    申请日:2019-07-09

    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.

    Miniaturized Fourier-transform Raman spectrometer systems and methods

    公开(公告)号:US11313725B2

    公开(公告)日:2022-04-26

    申请号:US16928197

    申请日:2020-07-14

    Abstract: State-of-the-art portable Raman spectrometers use discrete free-space optical components that must be aligned well and that don't tolerate vibrations well. Conversely, the inventive spectrometers are made with monolithic photonic integration to fabricate some or all optical components on one or more planar substrates. Photonic integration enables dense integration of components, eliminates manual alignment and individual component assembly, and yields superior mechanical stability and resistance to shock or vibration. These features make inventive spectrometers especially suitable for use in high-performance portable or wearable sensors. They also yield significant performance advantages, including a large (e.g., 10,000-fold) increase in Raman scattering efficiency resulting from on-chip interaction of the tightly localized optical mode and the analyte and a large enhancement in spectral resolution and sensitivity resulting from the integration of an on-chip Fourier-transform spectrometer.

    SYSTEMS AND METHODS FOR RAMAN SPECTROSCOPY

    公开(公告)号:US20210262860A1

    公开(公告)日:2021-08-26

    申请号:US17243157

    申请日:2021-04-28

    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.

    Systems and methods for Raman spectroscopy

    公开(公告)号:US11041759B2

    公开(公告)日:2021-06-22

    申请号:US16456188

    申请日:2019-06-28

    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.

    Ultra-wide field-of-view flat optics

    公开(公告)号:US12212853B2

    公开(公告)日:2025-01-28

    申请号:US17209496

    申请日:2021-03-23

    Abstract: Wide-angle optical functionality is beneficial for imaging and image projection devices. Conventionally, wide-angle operation is attained by a complicated assembly of optical elements. Recent advances have led to meta-surface lenses or meta-lenses, which are ultra-thin planar lenses with nanoantennas that control the phase, amplitude, and/or polarization of light. Here, we present a meta-lens capable of diffraction-limited focusing and imaging over an unprecedented >170° angular field of view (FOV). The lens is integrated on a one-piece flat substrate and includes an aperture on one side and a single meta-surface on the other side. The meta-surface corrects third-order Seidel aberrations, including coma, astigmatism, and field curvature. The meta-lens has a planar focal plane, which enables considerably simplified system architectures for imaging and projection. The meta-lens design is generic and can be readily adapted to different meta-atom geometries and wavelength ranges to meet diverse application demands.

    Optical devices with phase-change materials

    公开(公告)号:US12189219B2

    公开(公告)日:2025-01-07

    申请号:US17183267

    申请日:2021-02-23

    Abstract: Reversible phase-change materials (PCMs) can be added to or incorporated into meta-lenses, wave plates, waveguides, gratings, and other optical components to form active optical devices with controllable and adjustable optical characteristics. Local heating can be used to induce solid-state phase changes and large refractive index changes in the PCMs. The phase and index changes can provide large changes in the device's optical characteristics. Optical devices with PCM can be used for imaging applications, orbital angular momentum control, photonic integrated circuits and optical communication systems, beam steering, and other application.

Patent Agency Ranking