Abstract:
A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
Abstract:
A carrier gas is directed through a humidification chamber in a humidifier, where the carrier gas flow is directly contacted with a feed liquid to humidify the carrier gas with water evaporated from the feed liquid, producing a humidified gas flow. The humidified gas flow is then compressed in a compressor and then directed through a dehumidification chamber in a dehumidifier, where the compressed humidified gas flow is dehumidified to condense water from the compressed humidified gas flow. The dehumidified gas flow is then expanded in an expander, wherein the expansion of the dehumidified gas flow generates motion (e.g., rotation of a shaft), and wherein the motion generated in the expander is transferred to the compressor, where the motion compresses the humidified gas flow. Heat is also removed from the expanded dehumidified gas flow and transferred to compressed dehumidified gas flow upstream from the expander.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.
Abstract:
A humidification-dehumidification system comprises a source of liquid; a humidifier including carrier-gas and liquid inlets and outlets and a chamber in which the liquid can contact a carrier gas containing a condensable fluid in vapor phase that is introduced from the carrier-gas inlet in a counterflow arrangement and in which a portion of the liquid can vaporize into the carrier gas; a bubble-column vapor mixture condenser including at least first and second stages, each stage including a carrier-gas inlet and outlet and a chamber configured to contain a liquid bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet; a conduit passing from the source of the liquid through the chamber of each stage of the bubble-column condenser; and an intermediate exchange conduit coupled with (a) the bubble-column vapor mixture condenser and (b) the humidifier chamber at intermediate stages of each for transfer of the carrier gas therebetween.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
In a bubble-column vapor mixture condenser, a fluid source supplies a carrier-gas stream including a condensable fluid in vapor phase. The condensable fluid in liquid form is contained as a bath in a chamber in each stage of the condenser, and the carrier gas is bubbled through the bath to condense the condensable fluid into the bath. Energy from condensation is recovered to a coolant in a conduit that passes through the liquid in the stages of the condenser. The bubble-column vapor mixture condenser can be used, e.g., in a humidification-dehumidification system for purifying a liquid, such as water.
Abstract:
A method for condensing a vapor uses a multi-stage bubble-column vapor mixture condenser that includes at least a first stage, a second stage, and a third stage, each with a carrier-gas inlet and outlet as well as a condensing bath and a volume of carrier gas above the condensing bath. The carrier-gas inlet of the second and third stages is in the form of a sieve plate. The first-stage condensing bath is at a temperature of 60° C. to 90° C. Carrier gas flows at a temperature above 60° C. and up to 93° C. into and through the carrier-gas inlet of the first stage, then into and through the condensing bath in the first stage, and then into and through the volume of carrier gas above the condensing bath in the first stage. The carrier gas then similarly flows through the second- and third-stage condensing baths, each of which is at least 5° C. cooler than the temperature of the condensing bath in the preceding stage. Additional carrier gas is injected through an intermediate-exchange inlet into the volume of carrier gas above the condensing bath in at least one of the first and second stages to control the heat and mass profile of the carrier gas flowing through the stages of the multi-stage bubble-column vapor mixture condenser and to thereby maintain the temperature differentials between the condensing baths in the first, second, and third stages.