Abstract:
A method of transmitting information over POTS wiring includes transmitting a first delimiter signal, in the form of a multi-cycle waveform having a frequency of approximately 7.5 MHz, over the POTS wiring. A second delimiter signal, also comprising a multi-cycle waveform, is then later propagated over the POTS wiring. The time duration between the respective propagations of the first and second delimiter signals defines a symbol, which encodes information. The time duration is also such that reflections on the carrier medium resulting from the propagation of the first delimiter signal decay to a predetermined level prior to propagation of the second delimiter signal.
Abstract:
A separator (10) comprises a housing (12) and a separator chamber (24) contained within the housing, an inlet (26) and outlet (28) to the separator chamber and a dividing member (34) for substantially dividing the separator chamber into a first chamber (30) and a second chamber (32). A flow path (38) is provided between the first and second chambers for allowing flow to circulate between the first and second chambers, and guide means (56) for creating opposing flow paths in the second chamber (32) for slowing flow through the second chamber (32).
Abstract:
Methods of removing impurities from an impurity-loaded organic salt solution by intermixing the impurity-loaded organic salt solution with a stripping solution to form a biphasic mixture, wherein the intermixing effectively reduces the concentration of impurities in the impurity-loaded organic salt, thereby removing impurities from the organic salt and forming an impurity-reduced organic salt solution phase and a stripping solution phase are provided herein.
Abstract:
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.
Abstract:
Stable odor controlling compositions, methods for incorporating the compositions, and disposable absorbent articles, which release perfume and subsequently are able to minimize odor caused from bodily fluids via the presence of an oil-in-water emulsion that serves as a carrier and preservation system for the perfume. The stable odor controlling emulsion compositions include an oil-in-water emulsion comprising: a) an aqueous phase comprising a modified starch and water; b) an oil phase comprising a perfume; c) an effective amount of a rheology modifier; d) an effective amount of a co-surfactant; and e) an effective amount of an antimicrobial agent; wherein said emulsion composition is applied to said article in the form of stable emulsion droplets having an median size of less than about 1 μm and dries to form a discontinuous film.
Abstract:
Various technologies and techniques are disclosed for automating the activation of agents in particular workgroups. A call queue server receives incoming communications. A scheduling server is coupled to the call center server over a network and analyzes historical communication data to calculate a forecasted load for a particular time period. The system uses the forecasted load to create agent schedules for the workgroups for the particular time period. The system programmatically activates and deactivates the agents into and out of the workgroups at scheduled points in time based on the calculated schedules. The call center server routes each of the queued communications to a particular agent that is activated on a particular one of the workgroup.
Abstract:
Polyfunctional reagents are disclosed that are capable of reversibly binding to target substances, for example nucleic acid, proteins, polypeptides, cells, cell components, microorganisms or viruses, for use in purifying or otherwise manipulating them. The reagents comprise a tagging group for manipulating and/or detecting the target substance when bound to the polyfunctional reagent. The polyfunctional reagents work by binding the target substance at a first pH and then releasing it at a second pH, usually higher than the first. Examples of tagging groups include tagging group members of a specific binding pair which is capable of binding to a specific binding partner and/or a label.
Abstract:
An algorithm is provided for a frequency domain reflectometer which takes into account both attenuation per unit length of transmission line and phase shift per unit length of transmission line in a modified Inverse Fourier Transform that converts a frequency domain complex reflection coefficient into a more accurate time domain reflection coefficient so that the distance to a fault can be readily determined.
Abstract:
A multi-port junction is used in combination with an Inverse Fourier Transform to detect distance to fault in an RF transmission line or waveguide without the use of heterodyne down-conversion circuits. To provide an ultra-wide bandwidth frequency domain reflectometer the output ports of the multi-port junction are used to calculate distance to fault and return loss. The Inverse Fourier Transform algorithm is modified to take into account both phase shift per unit length of the transmission line and attenuation per unit of length in the transmission line, with the output of the modified Inverse Fourier Transform being applied to a module that subtracts out the effect of previous faults by solving for the distances ahead of time before knowing amplitudes and for solving for amplitude at each prior fault starting with the first fault. The output of this module is then used thresholded to remove the effects of noise, secondary reflections and inconsequential peaks. The result is a time domain waveform in which peak positions indicate the distance to real faults and in which return loss or percent reflection is calculated for each of the faults. Moreover, internal calibration loads and specialized processing are used to effortlessly calibrate the reflectometer in the field.