Abstract:
In some examples a medical device includes circuitry configured to at least one of sense a physiological parameter of a patient or deliver a therapy to the patient. The medical device may also include a housing configured to house the circuitry, wherein the housing includes a plurality of structural members and an attachment mechanism that joins the plurality of structural members. The attachment mechanism may be configured to suppress induced currents in the housing when the medical device is exposed to a time-varying magnetic field.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device (IMD) while the device is implanted in a patient. The IMD may include a rechargeable battery having a battery housing; a non-metallic substrate attached to the battery housing, wherein the non-metallic substrate and the battery housing form an outer housing of the implantable medical device; control circuitry formed on the non-metallic substrate within the outer housing of the IMD; a receive coil within the outer housing of the IMD, the receive coil configured to receive energy from outside of the outer housing of the IMD; and recharge circuitry within the outer housing of the IMD and coupled to the receive coil, the recharge circuitry configured to receive the energy from the receive coil, and recharge the rechargeable battery using the received energy.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be affixed to a ferrite sheet formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the ferrite sheet and the receive coil or coils may be positioned adjacent to some portion of the curved inner surface with the ferrite sheet positioned between the inner surface and the receive coil or coils.
Abstract:
Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The recharging system/device in some examples includes a first electrical coil and a second electrical coil configured to generate opposing magnetic fields forming a resultant magnetic field within a recharging envelope located between the coils. A third coil of the implantable medical device may be positioned within the recharging envelope so that the resultant magnetic field is imposed on the third coil, causing electrical energy to be induced in the third coil, the induced electrical energy used to recharge a power source of an implantable medical device coupled to the third coil, and/or to power operation of the implantable medical device.
Abstract:
Implantable medical devices include connector enclosure assemblies that utilize conductors that are electrically coupled to feedthrough pins and that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.
Abstract:
Medical devices include deformable structures that contact a lead upon being compressed. A grip that a clinician may grasp and manipulate is engaged with a nose structure of a header block of the medical device, and manipulation of the grip causes compression of the deformable structure to ultimately create fixation of the lead within the header block.
Abstract:
Implantable medical devices include connector enclosure assemblies that utilize conductors that are electrically coupled to feedthrough pins and that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.
Abstract:
Implantable medical device having a feedthrough, a feedthrough and method for making such feedthrough. The feedthrough has a ferrule, an electrically conductive pin, a preform having a preform liquidus temperature, a capacitor, positioned within the ferrule abutting the preform, having a coating having a coating liquidus temperature and being configured to electrically couple with the preform, and an insulative assembly configured, at least in part, to seal against passage of a liquid through the ferrule, and having an insulative assembly liquidus temperature. The coating liquidus temperature is greater than the preform liquidus temperature and the coating liquidus temperature being greater than the insulative assembly liquidus temperature.
Abstract:
Medical devices include deformable structures that contact a lead upon being compressed. A grip that a clinician may grasp and manipulate is engaged with a nose structure of a header block of the medical device, and manipulation of the grip causes compression of the deformable structure to ultimately create fixation of the lead within the header block.
Abstract:
Various embodiments of a sealed package and a method of forming such package are disclosed. The package includes a housing having an inner surface and an outer surface, a dielectric substrate having a first major surface and a second major surface, and a dielectric bonding ring disposed between the first major surface of the dielectric substrate and the housing, where the dielectric bonding ring is hermetically sealed to both the first major surface of the dielectric substrate and the housing. The package further includes an electronic device disposed on the first major surface of the dielectric substrate, and a power source disposed at least partially within the housing and electrically connected to the electronic device.