Abstract:
Various embodiments concern reprogramming an implantable medical device by an external programmer to operate using a second program version, the second program version replacing a first program version in controlling operation of the implantable medical device. It can be determined whether the implantable medical device will be able to operate using the first program version to deliver therapy according to the first program version if the implantable medical device was to revert back to using the first program version. The implantable medical device can then revert to operational programming from the second program version to the first program version, the first program version saved in memory of the implantable medical device as a restore point while the implantable medical device operates according to the second program version between the reprogramming and reverting of the implantable medical device.
Abstract:
Methods and apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
Abstract:
An implantable medical device (IMD) includes a drug reservoir located within a reservoir chamber of the IMD that includes a first side and a second side directly opposite the first side defining a reservoir volume there between. The IMD further includes and a volume sensor system including an ultrasound transmitter within the reservoir chamber and positioned to transmit an ultrasound signal toward the second side at an angle relative to the second side and a plurality of ultrasound sensors adjacent to at least one of the first side or second side of the drug reservoir with each sensor positioned to selectively receive the signal from the transmitter at different reservoir volume levels to indicate a current volume capacity of the drug reservoir.
Abstract:
In some aspects, systems, devices, and techniques for programming a medical fluid delivery device are described. In one example, the disclosure relates to a system including a medical fluid delivery device configured to deliver a therapeutic agent to a patient, and a processor. The processor may be configured to receive a proposed therapy dosing program that defines a fluid therapy for delivery to a patient via a medical fluid delivery device for a first period of time, determine a total dosage over a second period of time, where the second period of time at least partially overlaps the first period of time, and compare the total dosage over the second period of time to a reference dosage.
Abstract:
In some aspects, systems, devices, and techniques for programming a medical fluid delivery device are described. In one example, the disclosure relates to a system including a medical fluid delivery device configured to deliver a therapeutic agent to a patient, and a processor. The processor may be configured to receive a proposed therapy dosing program that defines a fluid therapy for delivery to a patient via a medical fluid delivery device for a first period of time, determine a total dosage over a second period of time, where the second period of time at least partially overlaps the first period of time, and compare the total dosage over the second period of time to a reference dosage.
Abstract:
An implantable access port including a port housing that defines a fill port cavity and includes a catheter fitting, a filter positioned within the port housing along a delivery flow pathway configured so that fluid injected into the fill port cavity passes through the filter prior to exiting through the catheter fitting, a one-way valve positioned within the port housing along an aspiration flow pathway configured to permit aspirated fluid to flow unfiltered from the catheter fitting to the fill port cavity and prevent injected fluid from flowing unfiltered from the fill port cavity to the catheter fitting, a port cover coupled to the port housing, and a pierceable septum positioned between the fill port cavity and the port cover configured to allow a needle to pierce through the pierceable septum to access the fill port cavity.
Abstract:
An implantable access port including a port housing that defines a fill port cavity and includes a catheter fitting, a filter positioned within the port housing along a delivery flow pathway configured so that fluid injected into the fill port cavity passes through the filter prior to exiting through the catheter fitting, a one-way valve positioned within the port housing along an aspiration flow pathway configured to permit aspirated fluid to flow unfiltered from the catheter fitting to the fill port cavity and prevent injected fluid from flowing unfiltered from the fill port cavity to the catheter fitting, a port cover coupled to the port housing, and a pierceable septum positioned between the fill port cavity and the port cover configured to allow a needle to pierce through the pierceable septum to access the fill port cavity.
Abstract:
An implantable pump configured to enable tuning of a delivery velocity of a fixed quantity of medicament. The implantable pump including a pump, an accumulator and a valve configured to enable tuning of a delivery velocity of a fixed quantity of medicament, wherein operating the pump with the valve continuously in the open state enables a steady-state delivery of medicament at a first velocity, and wherein closing of the valve enables the pump to at least partially fill the accumulator and subsequent opening of the valve enables the at least partially filled accumulator to dispense medicament, thereby delivering a bolus of medicament at a second velocity, wherein the second velocity is greater than the first velocity.
Abstract:
An implantable medical device is configured to alert a user of a failed or delayed automatic restart following a programming update. In some examples, the device is configured to wirelessly receive a programming update that includes a command instructing the implantable medical device to cease a therapy-delivery regimen while installing the programming update, and a timeout module configured to initiate a countdown timer for a predetermined duration of time, whereupon failure of the regimen to automatically restart upon expiration of the predetermined duration of time triggers an alert to notify a user that the implantable medical device has failed to restart.
Abstract:
An implantable infusate spread promoting system configured to enable improved dispersion of delivered infusate. The system including an implantable device configured to enable infusate delivery within a body of a patient, and an implantable manually actuatable flushing pump configured to remove and re-inject a quantity of fluid with each actuation to promote improved dispersion of the delivered infusate.