摘要:
A light emitting apparatus (10, 110, 210, 310, 410) includes one or more light emitting chips (12, 112, 212, 312, 412) and a support (13, 14, 114, 214, 314, 414) on which the light emitting chips are disposed. The support includes a first side on which the light emitting chips are attached and a second side opposite the first side. A thermally superconducting heat transfer medium (22, 122, 222, 322, 422) is disposed in an interior volume of the support and thermally connects the first and second sides of the support. The thermally superconducting heat transfer medium has a thermal conductivity at least 1500 times greater than the thermal conductivity of copper.
摘要:
A light emitting apparatus (10, 110, 210, 310, 410) includes one or more light emitting diode chips (12, 112, 212, 312, 412) disposed on a chip support wall (16, 116, 216) including printed circuitry (34, 134, 234, 360, 362, 460, 462) connecting with the light emitting diode chips. A heat pipe (24, 124, 224, 324, 424) has a sealed volume (22, 122, 222, 322, 422) defined by walls including the chip support wall and at least one additional wall (18, 20, 118, 120, 218). The heat pipe further includes a heat transfer fluid (26, 226, 326, 426) disposed in the sealed volume.
摘要:
A lighting system has a heat sink for removing the heat released by LED chips by means of natural convection and thermal radiation. A center opening formed between air and heat sink fins enables the transfer of heat generated by LEDs, electronic driver circuit and phosphor on said heat sink fins to the flowing air inside and removing from the system, and increases the contact surface of heat sink fins with the air that enables to transfer the heat effectively from heat sink fins to flowing air and also with effective radiative heat transfer. The heat sink has a chimney inlet where air enters into said center opening, on which the PCB and said LED package are positioned, and which interconnects LED package and heat sink, which has an optimized structure and base angle, that maximize the heat removal by natural convection and thermal radiation.
摘要:
A chassis with distributed jet cooling is provided. The chassis includes one or more sidewalls defining a volume configured to substantially surround one or more heat generating components positioned within the volume. The chassis further includes at least one array of fins thermally coupled to a respective one of the one or more sidewalls and at least one synthetic jet assembly comprising a multi-orifice synthetic jet or a number of single orifice synthetic jets disposed on a side of a respective one of the array(s) of fins. The chassis further includes at least one attachment means for attaching a respective one of the at least one synthetic jet assemblies to a respective one of the one or more sidewalls.
摘要:
A synthetic jet includes a first backer structure, one and only one actuator, a wall member coupled to and positioned between the first backer structure and the one and only one actuator to form a cavity, and wherein the wall member has an orifice formed therethrough, and wherein the orifice fluidically couples the cavity to an environment external to the cavity.
摘要:
A thermal management system is provided. The thermal management system includes at least one heat sink including one or more respective fins, wherein the one or more fins include one or more respective cavities. The thermal management system also includes a synthetic jet stack including at least one synthetic jet mounted within each of the respective cavities employing at least one engaging structure to provide a rigid positioning of the synthetic jet stack within the fins, wherein the synthetic jet includes at least one orifice through which a fluid is ejected.
摘要:
A synthetic jet actuator includes a first plate, a second plate spaced apart from the first plate and arranged parallelly thereto, and a housing positioned about the first and second plates and defining a chamber, the housing having a pair of orifices formed therein in opposing sides of the housing such that the chamber is in fluid communication with an external environment. The synthetic jet actuator also includes a mounting mechanism configured to mount the first and second plates within the housing in a suspended arrangement and an actuator element coupled to at least one of the first and second plates to selectively cause deflection thereof, thereby changing a volume within the chamber so that a series of fluid vortices are generated and projected to the external environment out from the pair of orifices of the housing.
摘要:
In one embodiment, a cooling system is disclosed. The cooling system comprises: a cooling channel for receiving a cooling media, a substrate disposed near the cooling channel, and a fluidic jet disposed within the substrate and in fluid communication with the cooling channel. The cooling channel is for thermal communication with a component to be cooled. The cooling channel has a height of less than or equal to about 3 mm and a width of less than or equal to 2 mm. The fluidic jet comprises a cavity defined by a well and a membrane. In one embodiment, a method of cooling an electrical component comprises: passing a cooling media through a cooling channel, drawing the cooling media into one or more of the fluidic jets, expelling the cooling media from the one or more fluidic jets into the cooling channel, and removing thermal energy from the electrical component.
摘要:
A system for cooling a device includes a heat sink comprising a substrate having a plurality of fins arranged thereon, a fan positioned to direct an ambient fluid in a first direction across the heat sink, and a first synthetic jet assembly comprising one of a multi-orifice synthetic jet and a plurality of single orifice synthetic jets. The first synthetic jet assembly is configured to direct the ambient fluid in a second direction across the heat sink, wherein the second direction is approximately perpendicular to the first direction.
摘要:
A chassis with distributed jet cooling is provided. The chassis includes one or more sidewalls defining a volume configured to substantially surround one or more heat generating components positioned within the volume. The chassis further includes at least one array of fins thermally coupled to a respective one of the one or more sidewalls and at least one synthetic jet assembly comprising a multi-orifice synthetic jet or a number of single orifice synthetic jets disposed on a side of a respective one of the array(s) of fins. The chassis further includes at least one attachment means for attaching a respective one of the at least one synthetic jet assemblies to a respective one of the one or more sidewalls.