Abstract:
The present invention pertains to a process for the chromatographic separation of nucleic acid mixtures into their double-stranded and single-stranded nucleic acid fractions by simultaneously absorbing said nucleic acids as a whole to a mineral support, followed by separation into double-stranded and single-stranded nucleic acids by fractional elution, or by selectively absorbing double-stranded or single-stranded nucleic acid of a liquid sample to a mineral support, as well as solutions and a kit for performing the process according to the invention.
Abstract:
Use of isopropanol in aqueous solutions for chromatographic isolation of nucleic acids for enhancing the transfection efficiency of the isolated nucleic acids in prokaryotic and eukaryotic cells.
Abstract:
A process is disclosed for reducing or removing endotoxins from compositions containing therapeutic active substances extracted from natural sources by genetic engineering and/or biotechnology. For that purpose, the compositions are treated with chromatographic materials. The natural sources are disintegrated, the thus obtained fractions are, if required, centrifuged, filtered or treated using affinity chromatography methods, the fractions are pre-incubated in an aqueous salt solution and detergents, are treated with anion exchange materials, then washed with another salt solution. The active substances are eluted from the anion exchanger then further purified in a manner known per se.
Abstract:
The support plate accommodating and being integrally connected with a plurality of adjacent sample containers is disclosed. Each sample container is suitable to accommodate a liquid sample to be separated into components and has an inlet opening and an outlet opening between which a separation layer is arranged. The sample container has a bottom wall in which the outlet opening is located and the outlet opening encloses an outlet spout having an inner diameter in the range of 0.1 to 1 mm and a length in the range of 5 to 20 mm. The ratio between the inner diameter of the outlet spout and its length is in the range of 0.005 to 0.2.
Abstract:
A device (10) for separating liquid samples has a sample container (12), bottom wall (20) of which has an outlet opening (22) provided therein. The outlet opening (22) is joined by an outlet spout (24) extending in the axial direction of the sample container (12). On bottom wall (20) there is a separation layer (28). Below sample container (12), a collecting container (32) is arranged abutting sample container (12) such that an exchange of air between the interior of the collecting chamber (32) and the environment is possible, yet an escape of liquid is largely inhibited. The contact surface between collecting chamber (32) and sample container (12) and end (26) of the outlet spout (24) through which the liquid is discharged, are axially spaced apart.
Abstract:
A method for the separation of long-chain nucleic acids from other substances in solutions containing nucleic acids and other materials, comprising fixing long-chain nucleic acids in a nucleic acid-containing solution onto a porous matrix, washing the porous matrix to separate the other substances from the long-chain nucleic acids, and removing the fixed long-chain nucleic acids from the porous matrix is disclosed. A device for carrying out the method of the claimed invention is also described.
Abstract:
A process for the depletion or removal of endotoxins from preparations containing active ingredients designated for therapeutical use which are obtained from natural sources by genetic engineering and/or biotechnology by treatment with chromatographic material wherein said natural sources are lysed, the fractions obtained are optionally centrifuged, filtrated or treated with affinity chromatographic methods; said fractions are preincubated with an aqueous salt solution and detergents, treated with anion exchange material and then washed with another salt solution, and the active ingredients are eluted from the anion exchanger, followed by further purification in a per se known manner.
Abstract:
The present invention pertains to a process for the chromatographic separation of nucleic acid mixtures into their double-stranded and single-stranded nucleic acid fractions by simultaneously absorbing said nucleic acids as a whole to a mineral support, followed by separation into double-stranded and single-stranded nucleic acids by fractional elution, or by selectively absorbing double-stranded or single-stranded nucleic acid of a liquid sample to a mineral support, as well as solutions and a kit for performing the process according to the invention.
Abstract:
Described is a method of isolating cell components, such as nucleic acids, from natural sources by filtering a sample of the digested natural sources such as cells or cell fragments. The method is characterized in that the sample is passed through a filter, the pore size of which decreases in the direction of flow of the sample through the filter.
Abstract:
A method for the purification and separation of nucleic acid mixtures by chromatography including adsorbing the nucleic acids to be separated and purified from a solution with a high concentration of salts (ionic strength) and/or a high concentration of alcohol on a substrate and subsequent desorbing from the substrate by means of a solution with lower concentration of salts (ionic strength).