摘要:
An inverter formed in a semiconductor substrate is disclosed. The inverter comprises: a p-well formed in the substrate, the p-well being the output of the inverter; a gate structure formed atop the p-well, the gate structure being the input of the inverter and being formed from a thin gate oxide layer underneath a conductive layer; an n- base formed adjacent to a first edge of the gate structure; a p+ structure formed within the n- base; and a n+ structure adjacent a second edge of the gate structure.
摘要:
A method of forming an ETOX-cell in a semiconductor substrate is disclosed. The method begins with forming a p-well in the substrate. Then, a drain region and a source region is formed in the p-well. The drain region is of a first dopant type and the source region is of a second dopant type (i.e. same as the dopant type of the p-well). A floating-gate and tunnel oxide stack is formed above the p-well, the floating gate formed between the drain region and the source region and only after the drain region and the source region have been formed. The floating gate is doped with the same dopant type as the p-well. Finally, a control gate is formed above the floating-gate, the floating-gate and the control gate separated by a dielectric layer. The new ETOX cells can be organized into a NOR array, but with no need of source line connections. Each cell is programmed by band-to-band induced substrate hot-electron (BBISHE) at the source, and read by GIDL at the drain side.
摘要:
A new method for injecting electrons from a forward biased deep n-well to p-well junction underneath the channel area of a triple-well ETOX cell during substrate hot electron (SHE) programming. The ETOX cell has a control gate, a floating gate, a deep n-well formed in the substrate, a p-well formed in the n-well, a drain implant formed in the p-well, and a source implant formed in the p-well. The method comprises the steps of: forward biasing the deep n-well relative to the p-well; positively biasing the control gate by a voltage sufficient to invert the channel between the source implant and the drain implant; and positively biasing the source and drain. The SHE programming has at least 100 times higher efficiency than channel hot electron (CHE). The cell threshold voltage (V.sub.T) saturates to a value in a self-convergent manner. The SHE can also be used for tightening the Vt spread by a re-programming technique after erase.
摘要:
A method of fabricating an EEPROM cell structure in a semiconductor substrate includes forming a layer of silicon oxide having a first thickness on the silicon substrate. N-type dopant is then introduced into the semiconductor substrate to define a buried region beneath the silicon oxide layer. Next, a tunnel window opening is formed in the silicon oxide layer to expose a surface area of the buried region. A layer of tunnel oxide is then grown in the tunnel window opening on the exposed surface of the buried region, such that the tunnel oxide has a thickness that is less than the thickness of the silicon oxide. A first layer of polysilicon is then formed on the structure resulting from the foregoing steps, followed by an overlaying layer of oxide.backslash.nitride.backslash.oxide (ONO) and an overlying layer of second polysilicon. The poly-2, ONO.backslash.poly-1 sandwich is then anisotropically etched to form first and second stacks which provide the floating gate/control gate electrodes for the EEPROM cell access transistor and the EEPROM cell storage cell structure, respectively.
摘要:
The layout and the programming voltage of a single-poly EPROM cell are reduced by eliminating the n+ contact region which is conventionally utilized to place a positive voltage on the n-well of the cell, and by utilizing a negative voltage to program the cell. The negative voltage is applied to a p+ contact region formed in the n-well which injects electrons directly onto the floating gate of the cell.
摘要:
Multiple logic levels can be simultaneously programmed into any combination of memory cells in a column of an ETOX array by applying one of a corresponding number of programming voltages to the word lines that correspond with the cells to be programmed. In the present invention, the memory cells in the array form a punchthrough current during programming which, in turn, leads to the formation of an increased number of substrate hot electrons. By utilizing the substrate hot electrons formed from the punchthrough current in addition to the channel hot electrons, much lower control gate voltages can be utilized during programming.
摘要:
Multiple logic levels can be simultaneously programmed into any combination of memory cells in a column of an alternate-metal virtual-ground (AMG) EPROM or flash memory array by applying one of a corresponding number of programming voltages to the word lines that correspond with the cells to be programmed. In the present invention, the memory cells in the array form a punchthrough current during programming which, in turn, leads to the formation of an increased number of substrate hot electrons. By utilizing the substrate hot electrons formed from the punchthrough current in addition to the channel hot electrons, much lower control gate voltages can be utilized during programming.
摘要:
A transistor structure fabricated on thin SOI is disclosed. The transistor on thin SOI has gated n+ and p+ junctions, which serve as switches turning on and off GIDL current on the surface of the junction. GIDL current will flow into the floating body and clamp its potential and can thus serve as an output node. The transistor can function as an inverter. The body (either n-well or p-well) is isolated from the n+ or P+ “GIDL switches” by a region of opposite doping type, i.e., p-base and n-base. The basic building blocks of logic circuits, e.g., NAND and NOR gates, are easily implemented with such transistors on thin SOI wafers. These new transistors on thin SOI only need contacts and metal line connections on the VCC and VSS. The connection of fan-outs (between the output and input) can be implemented by capacitor coupling. The transistor structure and operation is useful for high-performance, low-voltage, and low-power VLSI circuits on SOI wafers.
摘要:
Leakage of a single-poly EPROM cell is prevented by eliminating field oxide isolating the source, channel, and drain from the control gate n-well, and by replacing field oxide surrounding the cell with a heavily doped surface isolation region. The EPROM cell also utilizes a floating gate having an open-rectangular floating gate portion over the control gate region, and a narrow floating gate portion over the channel and intervening silicon substrate. The surface area of the open-rectangular floating gate portion ensures a high coupling ratio with the control gate region. The small width of the narrow floating gate portion prevents formation of a sizeable leakage path between the n-well and the source, channel, and drain. To conserve surface area, the EPROM cell also eliminates the p+ contact region and the PLDD region in the control gate well of the conventional EPROM design. This is permitted because the VTp implant step is masked, permitting the control gate region to operate in accumulation mode during application of 5V programming voltages.
摘要:
A transistor structure fabricated on thin SOI is disclosed. The transistor on thin SOI has gated n+ and p+ junctions, which serve as switches turning on and off GIDL current on the surface of the junction. GIDL current will flow into the floating body and clamp its potential and can thus serve as an output node. The transistor can function as an inverter. The body (either n-well or p-well) is isolated from the n+ or P+ “GIDL switches” by a region of opposite doping type, i.e., p-base and n-base. The basic building blocks of logic circuits, e.g., NAND and NOR gates, are easily implemented with such transistors on thin SOI wafers. These new transistors on thin SOI only need contacts and metal line connections on the Vcc and Vss. The connection of fan-outs (between the output and input) can be implemented by capacitor coupling. The transistor structure and operation is useful for highperformance, low-voltage, and low-power VLSI circuits on SOI wafers.