Abstract:
Systems and methods are disclosed herein for an enhanced Multimedia Broadcast Multicast Service (MBMS) in a wireless communications network. In one embodiment, a number of base stations in a MBMS zone, or broadcast region, accommodate both Spatial Multiplexing (SM) enabled user elements and non-SM enabled user elements. In another embodiment, a number of base stations form a MBMS zone, or broadcast region, where the MBMS zone is sub-divided into an SM zone and a non-SM zone. In another embodiment, the wireless communications network includes multiple MBMS zones. For each MBMS zone, base stations serving the MBMS zone transmit an MBMS zone identifier (ID) for the MBMS zone. The MBMS zone ID may be used by a user element for decoding and/or to determine when to perform a handoff from one MBMS zone to another.
Abstract:
In a method of providing downlink retransmissions to a mobile station in a wireless communication network, the wireless communication network comprising a base station communicatively linked to a transparent relay station, the base station receives a request for a retransmission from the mobile station; schedules resources for the retransmission; signals scheduling information for the retransmission to the transparent relay station via a control link; and the transparent relay station receives the scheduling information for the retransmission on the control link; and sends the retransmission to the mobile station in a retransmit subframe on a retransmit frequency band.
Abstract:
An apparatus and method for transmitting data with conditional zero padding is provided. In accordance with an embodiment of the disclosure, a transmitter transmits data to a receiver by transmitting symbols such that each symbol is preceded by a cyclic prefix of a fixed length and the symbol conditionally includes enough zero padding to avoid ISI (Inter-Symbol Interference) between consecutive symbols. In some implementations, if the fixed length for cyclic prefixes is long enough to avoid ISI between consecutive symbols, then the symbols may omit zero padding. Otherwise, the symbols may include enough zero padding to avoid ISI between consecutive symbols. The zero padding may be zero tail or zero head.
Abstract:
Methods, devices and systems for encoding and transmitting data in a wireless communications system and, in particular, for unscheduled data transmissions including low data rate transmissions. The method for transmitting data in a wireless network includes mapping data according to a predefined sequence pattern from a group of sequence patterns to provide a spreading sequence that includes multiple non-zero elements and that is enabled to partially collide in the wireless network with other spreading sequences that have been mapped according to other sequence patterns from the group; and transmitting the spreading sequence. Multiple sequences may be received by a network node and decoded using successive interference cancellation (SIC) techniques.
Abstract:
An apparatus and method for transmitting data with conditional zero padding is provided. In accordance with an embodiment of the disclosure, a transmitter transmits data to a receiver by transmitting symbols such that each symbol is preceded by a cyclic prefix of a fixed length and the symbol conditionally includes enough zero padding to avoid ISI (Inter-Symbol Interference) between consecutive symbols. In some implementations, if the fixed length for cyclic prefixes is long enough to avoid ISI between consecutive symbols, then the symbols may omit zero padding. Otherwise, the symbols may include enough zero padding to avoid ISI between consecutive symbols. The zero padding may be zero tail or zero head.
Abstract:
A method for reducing interference at a first user equipment (UE) includes receiving, by a second communications controller, a request to reduce interference at the first UE, the first UE being served by a first communications controller. The method also includes determining, by the second communications controller, a beam adjustment in accordance with uplink transmission measurements of the first UE and a second UE, the beam adjustment to aim a transmission to the second UE away from the second UE and towards an angle orthogonal to a first direction of the first UE relative to the second communications controller, the second UE being served by the second communications controller. The method further includes pre-adjusting, by the second communications controller, the transmission with the beam adjustment, and transmitting, by the second communications controller, the pre-adjusted transmission to the second UE.
Abstract:
A method and apparatus are provided for a wireless communication system including a base station and at least one user equipment. A Channel Quality Indicator (CQI) table can be generated so that only an index corresponding to the measured CQI needs to be fed back to the base station. The CQI tables proposed herein may be suitable to different channel statistics, different Multiple Input Multiple Output (MIMO) mode and may be optimized based on either performance or implementation complexity. Multiple CQI tables may be formed into one compound CQI table. The CQI tables may be stored at both a base station and user equipment. The base station can select a CQI table from the set of tables. The base station signals the selection of the CQI table to the user equipment and the user equipment feeds back indices from the selected CQI table to the base station.
Abstract:
International Mobile Telecommunications (IMT) Advanced technology, also known as 4th Generation (4G) targets to support up to 100 MHz BW. LTE currently supports single carrier bandwidths of up to 20 MHz. The present application describes a multi-carrier approach in which some embodiments of the invention provide a simple solution of aggregating multiple single carrier bandwidths to obtain a wider bandwidth (>20 MHz). Such an approach may extend Long Term Evolution (LTE) bandwidth to greater than that provided by a single carrier, yet maintain full backward compatibility with technologies that predate 4G technology and utilize smaller, single carrier bandwidths. More generally, embodiments of the invention can apply to other communication standards than only LTE.
Abstract:
A method and system for wireless data communication using a first wireless communication technology and a second wireless communication technology. The second wireless communication technology being different from the first wireless communication technology. A transmitter is arranged to transmit data using frame structures based on the first wireless communication technology and the second wireless communication technology in which the frame structure based on the second wireless communication technology has a timing structure, MAC and pilot that are also used with the frame structure of the first wireless communication technology. The transmitter is arranged to selectively change transmission on a frame by frame basis between the first wireless communication technology and the second wireless communication technology.
Abstract:
Soft handoff in an OFDMA system is disclosed. If the pilot signal strength for a base station exceeds the defined threshold, the base station is added to an active set list. Subcarriers in a plurality of orthogonal frequency division multiplexing (OFDM) symbols are divided and allocated into subchannels. The OFDM symbols are divided and multiplexed. A soft handoff zone with a first dimension of the subchannels and a second dimension of the divided and multiplexed OFDM symbols is defined. The soft handoff zone has subcarriers with a subchannel definition, for example, an identical permutation.