摘要:
A PLL circuit includes a phase frequency detector; a programmable charge pump coupled to an output of the phase frequency detector; a loop filter coupled to an output of the charge pump, the loop filter providing a fine tuning voltage; a first voltage-to-current converter, the first voltage-to-current converter providing a fine tuning current corresponding to the fine tuning voltage; a current-controlled oscillator (CCO); a feedback divider coupled to an output of the CCO and an input of the phase frequency detector; and an analog calibration circuit. The analog calibration circuit provides a coarse adjustment current for coarse adjustments to a frequency pivot point for an oscillator frequency of the CCO, wherein the CCO generates a frequency signal at an output responsive to a summed coarse adjustment and fine tuning current, wherein the frequency pivot point is continuously adjustable.
摘要:
Some embodiments regard a method comprising: generating a current according to a movement of the MEMS device; the movement is controlled by a control signal; generating a peak voltage according to the current; and adjusting the control signal when the peak voltage is out of a predetermined range.
摘要:
A method of operating a voltage regulator circuit includes generating a control signal by an amplifier of the voltage regulator circuit. The control signal is generated based on a reference signal at an inverting input of the amplifier and a feedback signal at a non-inverting input of the amplifier. A driving current flowing toward an output node of the voltage regulator circuit is generated by a driver responsive to the control signal, and the driver is coupled between a first power node and the output node. The feedback signal is generated responsive to a voltage level at the output node. A transistor, coupled between the output node and a second power node, is caused to operate in saturation mode during a period while the voltage regulator circuit is operating.
摘要:
Some embodiments regard a method comprising: generating a current according to a movement of the MEMS device; the movement is controlled by a control signal; generating a peak voltage according to the current; and adjusting the control signal when the peak voltage is out of a predetermined range.
摘要:
A voltage regulator circuit with high accuracy and Power Supply Rejection Ratio (PSRR) is provided. In one embodiment, an op-amp with a voltage reference input to an inverting input has the first output connected to a PMOS transistor's gate. The PMOS transistor's source and drain are each connected to the power supply and the voltage regulator output. The voltage regulator output is connected to an NMOS transistor biased in saturation mode and a series of two resistors. The non-inverting input of the op-amp is connected in between the two resistors for the first feedback loop. The op-amp's second output is connected to the gate of the NMOS transistor through an AC-coupling capacitor for the second feedback loop. The op-amp's first output can be connected to the power supply voltage through a capacitor to further improve high frequency PSRR. In another embodiment, the role of PMOS and NMOS transistors is reversed.
摘要:
An integrated circuit includes a differential amplifier. The differential amplifier includes at least one output end. A circuit is coupled with the at least one output end of the differential amplifier. The circuit does not include a resistor-capacitor (RC) network and is configured for providing a negative impedance to the differential amplifier for adjusting a direct current (DC) gain of the integrated circuit.
摘要:
An integrated circuit includes a first PMOS transistor, where its drain is arranged to be coupled to a voltage output, and its source is coupled to the drain of a second PMOS transistor. The source of the second PMOS transistor is arranged to be coupled to a high power supply voltage. The source and drain of a MOS capacitor are coupled to the source of the first PMOS transistor. The drain of an NMOS transistor is coupled to the drain of the first PMOS transistor. The integrated circuit is configured to receive a voltage input to generate the voltage output having a maximum voltage higher than the voltage input. The gate oxide layer thickness of the MOS capacitor is less than that of the first PMOS transistor.
摘要:
A voltage regulator includes an output stage electrically coupled with an output end of the voltage regulator. The output stage includes at least one transistor having a bulk and a drain. At least one back-bias circuit is electrically coupled with the bulk of the at least one transistor. The at least one back-bias circuit is configured to provide a bulk voltage, such that the bulk and the drain of the at least one transistor are reverse biased during a standby mode of a memory array that is electrically coupled with the voltage regulator.
摘要:
A level shifter includes an input node, an output node, a pull-up transistor, a pull-down transistor, and at least one diode-connected device coupled between the pull-up transistor and the pull-down transistor. The level shifter is arranged to be coupled to a high power supply voltage, to receive an input signal having a first voltage level at the input node, and to supply an output signal having a second voltage level at the output node. The high power supply voltage is higher than the first voltage level. The at least one diode-connected device allows the output signal to be pulled up to about a first diode voltage drop below the high power supply voltage and/or to be pulled down to about a second diode voltage drop above ground. The first diode voltage drop and the second diode voltage drop are from the at least one diode-connected device.
摘要:
A representative level-shifter comprises a dynamically biased current source circuit that receives a first voltage, a first and a second unidirectional current-conducting devices, a first and a second pull-down devices, and a pull-up device. The first and second unidirectional current-conducting devices are coupled to the dynamically biased current source circuit. A voltage output of the level-shifter is located at a first node that is located between the current-constant circuit and the second unidirectional current-conducting device. The first and second pull-down devices are coupled to the first and second unidirectional current-conducting devices, respectively. The pull-up device receives a second voltage and is coupled to the dynamically biased current source circuit and the first unidirectional current-conducting device. The pull-up device is configured to dynamically bias the dynamically biased current source circuit such that a voltage drop of the second unidirectional current-conducting device is output at the voltage output responsive to the pull-up device outputting the second voltage to the dynamically biased current source circuit, the first pull-down device being non-conducting and the second pull-down device being conducting.