摘要:
A nickel electrode for alkaline secondary battery including a porous sintered nickel substrate loaded with a nickel hydroxide-based active material, the nickel electrode has a configuration wherein a surface portion of the active material loaded into the sintered nickel substrate is provided with a combination of a first coating layer of a suitable compound and a second coating layer of a suitable compound, or a coating layer of a compound of two or more suitable elements, or wherein the coating layer of two or more suitable elements is formed between the sintered nickel substrate and the active material.
摘要:
In a hydrogen absorbing alloy electrode containing hydrogen absorbing alloy powder and a binding agent, employed as the binding agent is a copolymer of aromatic vinyl and at least one of acrylic ester and methacrylic acid ester, in which the total content of acrylic ester units and methacrylic acid ester units is in the range of 43 to 90% by weight of the whole copolymer, and the hydrogen absorbing alloy electrode is used as a negative electrode of a nickel-metal hydride battery.
摘要:
In a hydrogen absorbing alloy electrode employed as a negative electrode of an alkaline storage battery, a covering layer containing at least one of metal elected from nickel and cobalt, and carbon particles is formed on a surface of the hydrogen absorbing alloy electrode or hydrogen absorbing alloy particles used in the hydrogen absorbing alloy electrode.
摘要:
A hydrogen absorbing alloy electrode is prepared by adding a binder to a hydrogen absorbing alloy powder and forming the mixture to a shape of an electrode, and the binder is partly or entirely made of poly N-vinyl acetamide, whereby higher high-rate discharge characteristics are obtained than conventionally.
摘要:
A conductive agent for use in alkaline storage batteries in accordance with one aspect of the present invention contains 0.1 to 10% by weight sodium. This sodium content results from cobalt or a cobalt compound, to which an aqueous solution of sodium hydroxide is added and heated to 50 to 200.degree. C. A non-sintered nickel electrode for use in alkaline storage batteries is also proposed. In this electrode, the aforesaid conductive agent in accordance with the present invention is added to a pulverulent active material consisting of grains of nickel hydroxide or grains mainly constituted by nickel hydroxide such that 1 to 20 parts by weight of the conductive agent is added to 100 parts by weight nickel hydroxide contained in the pulverulent active material. Another non-sintered nickel electrode for use in alkaline storage batteries is also proposed. In this electrode, an active material takes the form of composite particles consisting of grains of nickel hydroxide or grains mainly constituted by nickel hydroxide, each of which has a surface formed with an electric conduction layer consisting of a cobalt compound containing 0.1 to 10% by weight sodium.
摘要:
A non-sintered nickel electrode for use in alkaline storage cells includes an active material comprising a solid solution of nickel hydroxide mixed with manganese, the solid solution further incorporating one or more elements selected from a group consisting of cobalt, cadmium, calcium and magnesium; an active material comprising a solid solution of nickel hydroxide mixed with manganese and zinc, the solid solution further incorporating one or more elements selected from a group consisting of cobalt, cadmium, calcium and magnesium; or an active material comprising nickel hydroxide with manganese added thereto, some of which manganese is incorporated in a solid solution of nickel hydroxide and the rest of which manganese exists as liberated from the solid solution of nickel hydroxide.
摘要:
The present electrode is fabricated by coating a conductive substrate with a paste including a hydrogen-absorbing alloy, a binder and a carbon material and sintering the conductive substrate coated with the paste under vacuum or in an atmosphere of a non-oxidizing gas. In this electrode, the carbon material works as a reducing agent so as to suppress oxidation of the hydrogen-absorbing alloy during the sintering, and therefore, the electrode exhibits large oxygen absorbing power in over-charge. Furthermore, the present battery uses, as a negative electrode, the sintered hydrogen-absorbing alloy electrode exhibiting large oxygen absorbing power in over-charge, and hence attains high reliability because increase of the pressure within the battery is minimal.
摘要:
A method of detecting battery degradation level detects charging and discharging current flow in the battery and determines battery degradation level (state of health, SOH) from the charging and discharging current. The method detects the battery degradation level (SOH) from the root-mean-square of the charging and discharging current flow (Irms) in the battery, which is designated effective current.
摘要:
The method of detecting battery degradation level detects the change in residual capacity (ΔSOC) for one charging period or one discharging period of a battery 1 being charged and discharged. Weighting factors that establish degradation level according to the value of ΔSOC are pre-stored in memory, and based on the stored data; weighting factors are determined from the detected ΔSOC to determine the battery 1 degradation level from the weighting factors.
摘要:
A method of detecting battery degradation level detects charging and discharging current flow in the battery and determines battery degradation level (state of health, SOH) from the charging and discharging current. The method detects the battery degradation level (SOH) from the root-mean-square of the charging and discharging current flow (Irms) in the battery, which is designated effective current.