Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor includes error injection circuitry separate and independent of debug circuitry of the processor. This circuitry can be used by a software developer to seed errors into a write-back path to system memory to emulate errors for purposes of validation of error recovery code of the software. The circuitry can include a register to store an address within the system memory at which an error is to be injected, a detection logic to detect when an instruction associated with the address is issued, and injection logic to cause the error to be injected into the address within the system memory responsive to the detection of the instruction. Other embodiments are described and claimed.
Abstract:
A method is described in which, in response to notice of a configuration event yet to happen within a network that is part of a link-based computing system, a component within said link based computing system: a) identifies networking configuration information changes to be made by components within the link-based computing system; and, b) sends instances of program code to each one of the components. Each instance of program code is to be executed by a specific component that it was sent to. Each instance of program code is customized to implement the particular one or more networking configuration information changes to be made at the specific component it was sent to.
Abstract:
Systems, apparatuses, and methods, and for entering a secured system environment using multiple authenticated code modules are disclosed. In one embodiment, a processor includes a decoder and control logic. The decoder is to decode a secured enter instruction. The control logic is to find an entry corresponding to the processor in a match table in a master authenticated code module and to read a master header and an individual authenticated code module from the master authenticated code module in response to decoding the secured enter instruction.
Abstract:
Hot plug modules comprising processors, memory, and/or I/O hubs may be added to and removed from a running computing device without rebooting the running computing device. The hot plug modules and computing device comprise hot plug interfaces that support hot plug addition and hot plug removal of the hot plug modules.
Abstract:
A method includes determining a plurality of memory addresses, each memory address being different from one another. The method further includes generating a plurality of system management interrupt interprocessor interrupts, each system management interrupt interprocessor interrupt having a corresponding processor in a plurality of processors in a system and each system management interrupt interprocessor interrupt including one of the plurality of memory addresses. The method further includes directing each system management interrupt interprocessor interrupt to the corresponding processor. An associated machine readable medium is also disclosed.
Abstract:
In a method for switching to a spare memory module during runtime, a processing system determines that utilization of an active memory module in the processing system should be discontinued. The processing system may then activate a mirror copy mode that causes a memory controller in the processing system to copy data from the active memory module to the spare memory module when the data is accessed in the active memory module. An operating system (OS) in the processing system may then access data in the active memory module to cause the memory controller to copy data from the active memory module to the spare memory module. The processing system may then reconfigure the memory controller to direct reads and writes to the spare memory module instead of the active memory module. Other embodiments are described and claimed.
Abstract:
In some embodiments, an apparatus includes a processor, an expander memory bridge location, a memory coupled to the expander memory bridge location, and a bus controller including intercept logic to intercept and block communication from the processor to the expander memory bridge location and to emulate an expander memory bridge. In some embodiments, a method includes intercepting and blocking a status request to a device, regardless of whether the device is installed, and responding to the status request.
Abstract:
Methods and apparatus for initiating secure operations in a microprocessor system are described. In one embodiment, a system includes a processor to execute a secured enter instruction, and a chipset to cause the system to enter a quiescent state during execution of the secured enter instruction.
Abstract:
A persistent host identifier value is used during the automatic detection (e.g., enumeration) of a wireless peripheral device by a host computer system following a power-up or reset operation of the host. Use of the persistent host identifier may allow the rapid establishment of a communication channel between the host computer system and wireless peripheral device. Once a wireless peripheral device has been enumerated, an identifier value associated with the peripheral device may also be retained, and used, during subsequent enumeration and/or binding operations.