摘要:
Systems and methods for enabling Reliability, Availability & Serviceability features after launching a secure environment under the control of LaGrande Technology (LT), or comparable security technology, without compromising security are provided. In one embodiment, the method comprises adding at least one specific capability to a processor to enable at least one of CPU hot-plug, CPU migration, CPU hot removal and capacity on demand.
摘要:
Systems and methods for enabling Reliability, Availability & Serviceability features after launching a secure environment under the control of LaGrande Technology (LT), or comparable security technology, without compromising security are provided. In one embodiment, the method comprises adding at least one specific capability to a processor to enable at least one of CPU hot-plug, CPU migration, CPU hot removal and capacity on demand.
摘要:
A discussion of improving integrated device deterministic response to test vectors. For example, limiting the transmission delay for an integrated device's response within known bounds by synchronizing an initialization training sequence to a reset deassertion. Specifically, the proposal facilitates response determinism from the DUT by synchronizing training sequences and subsequently synchronizing flit transmission to reset assertion as sampled by reference clock.
摘要:
A technique for performing barrier synchronization among a plurality of program threads. More particularly, at least one embodiment of the invention keeps track of completed tasks associated with a number of program threads using bits within a barrier register that can be updated and reassigned without incurring the amount of bus traffic as in the prior art.
摘要:
In a computing system a method for performing a multiplication of a first multiplicand and a second multiplicand is presented. The computing system includes a plurality of registers, an instruction decoder, an arithmetic logic unit, and a preshifter. The first multiplicand is divided into a plurality of equal length sections. Each section includes "n" bits, where "n" is an integer greater than one. The second multiplicand is placed in a first register from the plurality of registers. A second register from the plurality of registers is cleared to zero. For each section from the plurality of sections, starting with a first section containing high order bits of the first multiplication and proceeding to a last section of the first multiplicand containing low order bits of the first multiplicand the following three substeps. First, when the low order bit of a current section is a "1", the contents of the first register are added to the contents of the second register via the arithmetic logic unit. Second, for every other bit in the current section that is a "1", a shift-and-add operation is performed by shifting, via the preshifter, the contents of the first register by an amount equal to the number of bit places the bit is to the left of the low order bit of the current section and by adding, via the arithmetic logic unit, the preshifted contents of the first register to the contents of the second register. Third, for every section from the plurality of sections that does not contain low order bits of the first multiplicand, the contents of the first register "n" bits are shifted to the left.
摘要:
A memory circuit for interconnection to a computer including several memory banks, each bank including memory for the storage of information for the total address space addressable by the data processor. The memory circuit further includes a bank selection circuit connected to the data processor for receiving data representing a selected one of the memory banks. The memory circuit further includes a memory access circuit that determines from the bank selection circuit which one of the memory banks has been selected and provides alternating access between the selected memory bank and a specific memory bank in accordance with a timing signal from the data processor. The specific data bank includes display information and is accessed by the data processor during each interval when information is being output to the display. The memory circuit further includes a memory refresh circuit to refresh the memory banks by refreshing a limited number of memory banks during successive refresh time intervals in accordance with control signals from the display circuitry.