Abstract:
In an electronic component, each of a distance between a first outer electrode and a third outer electrode along a length direction and a distance between a second outer electrode and the third outer electrode along a length direction is about 8% to about 13% of a dimension of the electronic component along the length direction.
Abstract:
In a multilayer ceramic capacitor, SG represents an average of a distance between end portions of inner electrodes in a width direction and side surfaces of a ceramic body, OT represents an average of a distance between inner electrodes closest to main surfaces and the main surfaces, ET1 represents an average of dimensions of each portion of third and fourth terminal electrodes located on the main surfaces, and ET2 represents an average of dimensions of each portion of the third and fourth terminal electrodes located on the side surfaces. A dimension of the ceramic body in the width direction is larger than a dimension of the ceramic body in the height direction and Equations (1) and (2) are satisfied: SG>OT (1) ET1>ET2 (2).
Abstract:
A first terminal electrode extends from a second principal surface onto first and second side surfaces and a first end surface such as not to reach a first principal surface. A second terminal electrode extends from the second principal surface onto the first and second side surfaces and a second end surface such as not to reach the first principal surface. A third terminal electrode extends from the second principal surface onto the first and second side surfaces such as not to reach the first principal surface.
Abstract:
A method of producing a ceramic electronic component includes baking a first electrode paste containing a metal powder at a first temperature to form a first electrode layer at a first region of a ceramic body, baking a second electrode paste containing a metal powder of the same type as the metal powder in the first electrode paste at a second temperature lower than the first temperature to form a second electrode layer at a second region different from the first region of the ceramic body, and applying a physical shock treatment to a surface of the second electrode layer to densify a surface layer portion of the second electrode layer.
Abstract:
A gravure printing plate includes a cylindrical or substantially cylindrical gravure roller with a peripheral surface. Plural cells corresponding to a pattern to be printed are disposed on the peripheral surface of the gravure roller. First and second regions are provided on the peripheral surface of the gravure roller. The pattern to be printed includes at least two patterns. Plural cells corresponding to one of the two patterns are disposed in the first region. Plural cells corresponding to the other one of the two patterns are disposed in the second region.
Abstract:
In a method for manufacturing a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.
Abstract:
A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The insulating coating portions extend in a laminating direction between each of the second external electrodes and the first external electrode on a second principal surface, and from the second principal surface to respective portions of first and second side surfaces. A maximum thickness of the first external electrode on the second principal surface is larger than a maximum thickness for each of the second external electrodes on the second principal surface. A maximum thickness for each of the insulating coating portions on the second principal surface is larger than the maximum thickness of the first external electrode on the second principal surface.
Abstract:
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.
Abstract:
A multilayer ceramic electronic component includes a multilayer ceramic element with first through sixth surfaces, a center outer electrode located between a first-side outer electrode and a second-side outer electrode on the multilayer ceramic element. A first plated film is provided on the center outer electrode, second plated films are provided on the first-side outer electrode and the second-side outer electrode, respectively, and a thickness of each of the second plated films is greater than a thickness of the first plated film.
Abstract:
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.