Abstract:
There is provided a distance-adaptive and fragmentation-aware all-optical traffic grooming (DFG) method, which addresses the all-optical traffic grooming problem while considering the transmission reach constraints. The DFG procedure provisions traffic demands in optical channels such that the spectrum requires for guard bands is minimized. The DFG procedure provisions optical channels such that network fragmentation is minimized while ensuring the transmission reach constrains over flexible-grid WDM networks.
Abstract:
A method and apparatus are provided for embedding cloud demands with shared protection in a software-defined flexible-grid optical transport network. The method includes mapping working virtual nodes of the cloud demands over physical nodes of the network. The method further includes mapping backup virtual nodes of the cloud demands over the physical nodes. The method also includes mapping working virtual links of the cloud demands over physical routes of the network. The method additionally includes mapping backup virtual links of the cloud demands over the physical routes. The mapping steps are performed by an optical-defined controller having a processor.
Abstract:
Systems and methods for method for data transport using secure reconfigurable branching units, including receiving signals from a first trunk terminal and a second trunk terminal by branching units. Broadcasting is prevented for secure information delivery by dividing, within the branching units, the one or more signals from the first trunk terminal and the second trunk terminal into two or more sections, and sending the two or More sections to an optical coupler. Signals may be received from a branch terminal by one or more branching units using two fiber pairs, and the signals from the branch terminals may be divided into two or more groups of optical sections, wherein one of the sections includes dummy light. The divided, signals from the first trunk terminal, the second trunk terminal, and dummy light from the branch terminal may be merged, and the merged signal sent to the branch terminal.
Abstract:
A method entails an efficient procedure, namely Compute followed by Network Load Balancing (CNLB), that first maps virtual nodes over physical nodes while balancing computational resources of different types, and finally, maps virtual links over physical routes while balancing network spectral resources
Abstract:
Described is a novel framework, we call intent-based computing jobs assignment framework, for efficiently accommodating a clients' computing job requests in a mobile edge computing infrastructure. We define the intent-based computing job assignment problem, which jointly optimizes the virtual topology design and virtual topology mapping with the objective of minimizing the total bandwidth consumption. We use the Integer Linear Programming (ILP) technique to formulate this problem, and to facilitate the optimal solution. In addition, we employ a novel and efficient heuristic algorithm, called modified Steiner tree-based (MST-based) heuristic, which coordinately determines the virtual topology design and the virtual topology mapping. Comprehensive simulations to evaluate the performance of our solutions show that the MST-based heuristic can achieve an efficient performance that is close to the optimal performance obtained by the ILP solution.
Abstract:
A procedure to solve the DFOS placement problem that uses a genetic algorithm to achieve a global optimization of sensor placement. First, our procedure according to aspects of the present disclosure defines a fitness function that counts the number of DFOS sensors used. Second, the procedure uses a valid DFOS placement assignment to model an individual in the genetic algorithm. Each individual consists of N genes, where N is the number of nodes in the given network infrastructure, e.g., N=|V|. Each gene has two genomes: (1) a list of 0s and/or 1s, in which is represent the network nodes that are equipped with DFOS sensors, and 0s represent the nodes that are not equipped with DFOS sensors; (2) a list of sensing fiber routes. An individual that has smallest number of is in their genes will be considered as the strongest individual. Thirdly, the procedure randomly generates a population of individuals. After a certain number of generations of population, the strongest individual in the last generation will be the global optima for the DFOS placement assignment.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensor systems, methods, and structures that advantageously enable/provide for the proper placement/assignment of sensors in the DFOS network to provide for high reliability, fault tolerant operation that survives fiber failures.
Abstract:
Aspects of the present disclosure describe systems, methods and structures for classification of higher-order spatial modes using machine learning systems and methods in which the classification of high-order spatial modes emitted from a multimode optical fiber does not require indirect measurement of the complex amplitude of a light beam's electric field using interferometry or, holographic techniques via unconventional optical devices/elements, which have prohibitive cost and efficacy; classification of high-order spatial modes emitted from a multimode optical fiber is not dependent on a light beam's alignment, size, wave front (e.g. curvature, etc.), polarization, or wavelength, which has prohibitive cost and efficacy; classification of higher-order spatial modes from a multimode optical fiber does not require a prohibitive amount of experimentally generated training examples, which, in turn, has prohibitive efficacy; and the light beam from a multimode optical fiber can be advantageously separated into two orthogonal polarization components, such that, the different linear combination of higher order spatial modes comprising each polarization component can be classified.
Abstract:
Aspects of the present disclosure describe systems, methods, and structures for passive optical add/drop multiplexing (POADM) architectures that remove the prior art requirement of an optical amplifier (i.e., repeater-less) at the POADM nodes.