Abstract:
Systems, feeder devices and methods for moving particulate hot melt adhesive from an adhesive supply to an adhesive melter. A feeder device includes a body having an inlet and an outlet, and an interior communicating with the inlet and the outlet. The inlet is configured to receive particulate hot melt adhesive from an outlet of the adhesive supply, and the outlet is configured to provide particulate hot melt adhesive to an inlet of the adhesive melter. The feeder device further includes a mechanical agitator positioned in the interior for urging the particulate hot melt adhesive in a flow direction toward the outlet.
Abstract:
An adhesive dispensing system and method of dispensing liquid material are disclosed. The adhesive dispensing system includes an adhesive dispensing module receiving hot melt adhesive through the inlet at a low pressure and rapidly developing high pressure at an outlet to thereby jet the hot melt adhesive therefrom. The system also includes a pressure container containing a supply of hot melt adhesive and configured to melt or maintain a heated temperature of the hot melt adhesive. A low pressure liquid passageway communicates between the adhesive dispensing module and the pressure container. The system also includes a pressurized air source in fluid communication with the adhesive dispensing module to operate the adhesive dispensing module by moving a piston to generate high pressure at the outlet of a nozzle for jetting hot melt adhesive as a discrete volume toward a substrate.
Abstract:
Methods for storing and moving adhesive particulate to an adhesive melter are disclosed. An interior space of a supply hopper is filled with adhesive particulate. A transfer pump is actuated to generate a vacuum at an inlet of the transfer pump to actuate removal of the adhesive particulate from the supply hopper. A consistent minimized depth of the adhesive particulate located directly above the inlet is maintained with a shroud located within the interior space of the supply hopper. In addition, adhesive particulate can be received in an interior space of a container. An open space is maintained within the interior space of the container proximate the pump inlet, where the open space entrains gas to be drawn by the transfer pump. The transfer pump can be actuated to generate a vacuum at the pump inlet to cause removal of the adhesive particulate from the container.
Abstract:
A transfer pump for moving pellets of adhesive includes a pump housing with an adhesive inlet coupled to a supply hopper, an adhesive outlet coupled to an outlet hose, and an adhesive passage extending between the adhesive inlet and the adhesive outlet. A first air nozzle communicates with the adhesive passage adjacent the adhesive inlet and expels a first air jet that pushes pellets of adhesive through the adhesive passage. A second air nozzle communicates with the adhesive passage between the adhesive inlet and the adhesive outlet and expels a plurality of second air jets that draw pellets of adhesive through the adhesive passage by a vacuum force. The first and second air nozzles prevent clogging of pellets in the adhesive passage and enable movement of larger pellets than either air nozzle individually.
Abstract:
A hot melt adhesive system includes a supply container for storing adhesive particulate, a transfer pump operatively connected to the supply container, a transfer hose operatively coupled to the transfer pump, and a blocking member. The blocking member is movable between a first position in which stored adhesive particulate and air are permitted to be withdrawn from the supply container into the transfer hose, and a second position in which the stored adhesive particulate is blocked from passing through the transfer hose while air is permitted to pass therethrough to flush the transfer hose of residual adhesive particulate.
Abstract:
An adhesive dispensing device includes a heater unit for melting adhesive material, a receiving space for feeding the heater unit, and a cyclonic separator unit for delivering adhesive pellets to the receiving space. The cyclonic separator unit includes a tangential inlet pipe proximate to a top end of a generally cylindrical pipe, which is connected to the receiving space at an open bottom end. The tangential or spiral flow of air and adhesive pellets generated through the cyclonic separator unit reduces the speed of the air and adhesive pellets to avoid splashing of molten adhesive material while maintaining enough speed to avoid adhesive build up on the generally cylindrical pipe.
Abstract:
An adhesive bin (10) for storing and moving adhesive particulate (14) to an adhesive melter (12) includes a supply hopper (16), a transfer pump (62) operable to generate a vacuum, and a shroud (94). The supply hopper (16) has a sidewall (20, 22, 24, 26) and defines an interior space (36). The transfer pump (62) extends through the sidewall (22) and into the interior space (36). In addition, the shroud (94) is connected to the sidewall (22) and extends into the interior space (36) and at least partially surrounds an inlet (82) of the transfer pump (62).
Abstract:
A transfer pump for moving pellets of adhesive includes a pump housing with an adhesive inlet coupled to a supply hopper, an adhesive outlet coupled to an outlet hose, and an adhesive passage extending between the adhesive inlet and the adhesive outlet. A first air nozzle communicates with the adhesive passage adjacent the adhesive inlet and expels a first air jet that pushes pellets of adhesive through the adhesive passage. A second air nozzle communicates with the adhesive passage between the adhesive inlet and the adhesive outlet and expels a plurality of second air jets that draw pellets of adhesive through the adhesive passage by a vacuum force. The first and second air nozzles prevent clogging of pellets in the adhesive passage and enable movement of larger pellets than either air nozzle individually.
Abstract:
A melter melts particulate hot melt adhesive into a liquefied form. The melter includes a heated receiving device having an interior with an inlet that receives the particulate hot melt adhesive and an outlet. The heated receiving device melts the particulate hot melt adhesive and directs the liquified hot melt adhesive to the outlet. A prepackaged container holds a supply of the particulate hot melt adhesive and includes an outlet. A particulate hot melt adhesive feed device allows the particulate hot melt adhesive to be directed from the outlet of the prepackaged container to the inlet of the heated receiving device.