Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
A system for network virtualization in which physical network resources in different physical contexts are configured to implement one or more distributed logical network elements, at least some of the physical network resources implementing the distributed logical network elements configured according the physical context of those network resources. The local configuration of a physical locale is a version of the logical configuration that is modified specifically for the physical locale. Such modification is based on locale identifiers that are assigned to the physical locales. Some systems use locale-specific information to modify next-hop preference. Some system use locally modified configurations to determine the placement of VMs.
Abstract:
Some embodiments provide a system that includes several host machines for hosting several virtual machines and a physical network for interconnecting the host machines. Each host machine includes a managed physical switching element (MPSE) including several ports for performing link layer forwarding of packets to and from a set of virtual machines running on the host machine. Each port is associated with a unique media access control (MAC) address. Each host machine includes a managed routing element (MPRE) for receiving a data packet from a port of the MPSE and performing network layer routing in order to forward the received data packet from a first virtual machine of a first network segment to a second virtual machine of a second network segment.
Abstract:
Some embodiments provide a system that includes a first set of virtual machines belonging to a first overlay network and a second set of virtual machines belonging to a second overlay network. The first and second sets of virtual machines operate in several host machines, each of which includes a managed physical routing element (MPRE) for routing data packet between virtual machines in different overlay networks. A particular MPRE is configured as a bridge for routing packets between virtual machines that are in different overlay networks but in a same IP (internet protocol) subnet.
Abstract:
A logical routing element (LRE) having multiple designated instances for routing packets from physical hosts (PH) to a logical network is provided. A PH in a network segment with multiple designated instances can choose among the multiple designated instances for sending network traffic to other network nodes in the logical network according to a load balancing algorithm. Each logical interface (LIF) of an LRE is defined to be addressable by multiple identifiers or addresses, and each LIF identifier or address is assigned to a different designated instance.
Abstract:
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.
Abstract:
A system and method for managing a trusted connection within a public cloud comprises transmitting a first token and a second token from a cloud service manager to a public cloud controller, initializing a public cloud manager in response to receipt of the first token and the second token, and generate a cloud certificate, and transmitting the cloud certificate and the second token from the public cloud manager to a management plane. The method further comprises establishing a trusted connection between the public cloud controller and the management plane in response to receipt of the cloud certificate and the second token by the management plane.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
A physical host machine of a public cloud system includes a set of processing units for executing instructions stored in non-transitory machine readable media. The physical host machine also includes a physical network interface cars (PNIC) and a non-transitory machine readable medium that stores a data compute node (DCN). The DCN includes first and second applications, first and second logical interfaces, a network stack, and a managed forwarding element (MFE). The first application is connected to the pNIC through the network stack, the first logical interface, and the MFE. The second application is connected to the PNIC through the network stack, the second logical interface, and the MFE.
Abstract:
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.