Abstract:
A solid-state imaging device includes n first photoelectric conversion elements configured to photoelectrically convert incident light, n first reading circuits configured to output corresponding first pixel signals, m second photoelectric conversion elements configured to photoelectrically convert incident light, m second reading circuits configured to sequentially output corresponding second pixel signals, and a reading control circuit, wherein each of the second reading circuits includes a detection circuit configured to output an event signal when a change in a second charge signal is detected and a pixel signal generation circuit configured to add address information to an event signal, and the reading control circuit causes the first pixel signal to be output by determining a reading region corresponding to address information, and n and m are natural numbers greater than or equal to 2.
Abstract:
A solid-state imaging device includes a first substrate, a second substrate, an electrode portion, a first substrate connecting portion, an electrostatic protection circuit, and a second substrate connecting portion. A photoelectric conversion element is disposed on the first substrate. A part of the peripheral circuit is arranged on the second substrate. The electrode portion has a connection surface. The first substrate connecting portion electrically connects the electrode portion and the second substrate. The electrostatic protection circuit is connected to a circuit between the first substrate connecting portion and the peripheral circuit. The second substrate connecting portion electrically connects the peripheral circuit and the photoelectric conversion element. The electrostatic protection circuit is disposed at a position such that the electrostatic protection circuit does not overlap any of the first substrate connecting portion and the second substrate connecting portion.
Abstract:
A solid-state imaging device includes a plurality of pixels in which photoelectric conversion units that generate signal charges are arranged in a matrix, a plurality of first charge accumulation circuits that hold the signal charges and output the signal charges as a first pixel signal, a plurality of charge transfer circuits that transfer the signal charges to the first charge accumulation circuit, and a plurality of second charge accumulation circuits that hold signal charges based on the signal charges generated by the photoelectric conversion units and output the signal charges as a second pixel signal in which the number of pixels is reduced to a predetermined number, and the charge transfer circuit transfers the signal charges in the same exposure period to the second charge accumulation circuit when transferring the signal charges of the same exposure to the first charge accumulation circuit.
Abstract:
In the solid-state imaging device, first and second substrates are electrically connected to each other via connectors electrically connecting the first and second substrates. A photoelectric conversion element is disposed in the first substrate. A read circuit is disposed in the second substrate and reads a signal generated by the photoelectric conversion element and transmitted via the connector. In a signal processing circuit including elements or circuits performing signal processing on the read signal, some of the elements or circuits are disposed in the first substrate, the remaining elements or circuits are disposed in the second substrate, and the elements or circuits disposed in the first and second substrates are electrically connected to each other via the connector.
Abstract:
A solid-state imaging device and an imaging device are capable of transferring a control signal to pixels formed in each chip of the solid-state imaging device, in which the plurality of chips are connected to each other, without an increase in a circuit size of the solid-state imaging device or an increase in the number of connectors between the chips. The solid-state imaging device, in which first and second substrates are electrically connected to each other via the connectors, includes a pixel unit in which a plurality of pixels each including a photoelectric conversion element disposed in the first substrate and a reading circuit disposed in the second substrate are arrayed two-dimensionally, and a read control circuit that controls reading of a signal from the pixels. The read control circuit includes a pulse generation unit and a logical unit.
Abstract:
A solid-state imaging device includes a first semiconductor substrate including a pixel array unit, a second semiconductor substrate stacked on a surface of a side opposite to a side on which light is incident in the first semiconductor substrate and on which a pixel control circuit and a reading circuit are arranged, and a plurality of connection electrodes configured to electrically connect pixel control signal lines between the first semiconductor substrate and the second semiconductor substrate, wherein the connection electrodes electrically connect pixel control signal lines within a pixel immediate region which overlaps a region where the pixel array unit is arranged in the first semiconductor substrate, and the pixel control circuit is arranged along an edge of the pixels in either one of a row direction and a column direction arranged in the pixel array unit in the pixel immediate region.
Abstract:
A solid-state imaging device includes n first photoelectric conversion elements configured to photoelectrically convert incident light, n first reading circuits configured to output corresponding first pixel signals, m second photoelectric conversion elements configured to photoelectrically convert incident light, m second reading circuits configured to sequentially output corresponding second pixel signals, and a reading control circuit, wherein each of the second reading circuits includes a detection circuit configured to output an event signal when a change in a second charge signal is detected and a pixel signal generation circuit configured to add address information to an event signal, and the reading control circuit causes the first pixel signal to be output by determining a reading region corresponding to address information, and n and m are natural numbers greater than or equal to 2.
Abstract:
A solid-state image pickup device includes: a first substrate which has a pixel part divided into a plurality of groups obtained by dividing a plurality of pixels arranged in a two-dimensional matrix into groups corresponding to each of a plurality of predetermined rows; and a second substrate including a pixel load current source corresponding to a vertical signal line to which the plurality of pixels disposed in the same column within the groups are connected, a column circuit that performs a predetermined process on a pixel signal which is output from the pixel to a corresponding vertical signal line, and a pixel for correction that outputs a pixel signal for correction for correcting the corresponding column circuit to the vertical signal line to which the corresponding column circuit is connected, for each column of the pixels belonging to the group.
Abstract:
A solid-state imaging device includes a pixel signal processing unit including a plurality of pixels; a plurality of first charge storage circuits which are configured to hold the first signal charges generated by the photoelectric conversion units and output first signal voltages as first pixel signals; and a plurality of second charge storage circuits which are configured to hold second signal charges and output second signal voltages, and a differential analog/digital conversion unit includes: a plurality of first differential calculation units; a plurality of first analog/digital conversion units which are configured to perform analog/digital conversion to the first differential pixel signals and output digital values indicating magnitudes of the first differential pixel signals; and a plurality of second analog/digital conversion units which are configured to perform analog/digital conversion to the second pixel signal and output digital values indicating magnitudes of the second pixel signals.
Abstract:
A solid-state image pickup device includes: a first substrate which has a pixel part divided into a plurality of groups obtained by dividing a plurality of pixels arranged in a two-dimensional matrix into groups corresponding to each of a plurality of predetermined rows; and a second substrate including a pixel load current source corresponding to a vertical signal line to which the plurality of pixels disposed in the same column within the groups are connected, a column circuit that performs a predetermined process on a pixel signal which is output from the pixel to a corresponding vertical signal line, and a pixel for correction that outputs a pixel signal for correction for correcting the corresponding column circuit to the vertical signal line to which the corresponding column circuit is connected, for each column of the pixels belonging to the group.