摘要:
High power white light LEDs are distributed within a thin reflective cavity. The cavity depth may be less than 3 cm and, in one embodiment, is about 1 cm. A light output surface of the cavity is a flat reflector with many small openings. A small plastic lens is positioned over each opening for causing the light emitted from each opening to form a cone of light between approximately 50-75 degrees. Alternatively, each hole may be shaped to be a truncated cone to control the dispersion. The light emitted by the LEDs is mixed in the cavity by reflecting off all six reflective walls of the cavity. The light will ultimately escape through the many holes, forming a relatively uniform pattern of light on a surface to be illuminated by the luminaire.
摘要:
Amber light LEDs have a higher luminance than red light LEDs. A vast majority of images displayed on television consists of colors that can be created using amber, green and blue components, with only a small percentage of red. In one embodiment of the present invention, the typically red primary light source in a projection display system is augmented with an amber light source. Green and blue primary light sources are also provided. All the light sources are high power LEDs. The particular mixture of the red and amber light is accomplished by varying the duty cycles of the red LEDs and the amber LEDs. If the RGB image to be displayed can be created using a higher percentage of amber light and a lower percentage of red light, the duty cycle of the amber LEDs is increased while the duty cycle of the red LEDs is decreased. Light/pixel modulators for creating the full color image from the three primary light sources are controlled to compensate for the variable amber/red mixture. This technique improves the efficiency of the projection system and generates less heat. A further increase in luminance can be achieved by controlling the light mixture from green and cyan LEDs as a primary light source and/or by controlling the light mixture from blue and blue-cyan LEDs as a primary light source.
摘要:
A white light LED for use in backlighting or otherwise illuminating an LCD is described where the white light LED comprises a blue LED over which is affixed a preformed red phosphor platelet and a preformed green phosphor platelet. In one embodiment, to form a platelet, a controlled amount of phosphor powder is placed in a mold and heated under pressure to sinter the grains together. The platelet can be made very smooth on all surfaces. A UV LED may also be used in conjunction with red, green, and blue phosphor plates. The LED dies vary in color and brightness and are binned in accordance with their light output characteristics. Phosphor plates with different characteristics are matched to the binned LEDs to create white light LEDs with a consistent white point for use in backlights for liquid crystal displays.
摘要:
A light emitting device includes a light emitting element, an optical concentrator, such as a compound parabolic concentrator, a dichroic filter between the light emitting element and the optical concentrator and a wavelength converting material, such as a phosphor. The optical concentrator receives light from the light emitting element, via the dichroic filter, and emits the light from an exit surface, which is smaller than the entrance surface. The optical concentrator may be manufactured from a material with a high refractive index, such as sapphire. The wavelength converting material is, e.g., disposed over the exit surface. The radiance of the wavelength converting material is increased by pumping the wavelength converting material through a high index of refraction material and outputting the converted light into a low refractive index medium, such as air.
摘要:
One or more LEDs are mounted within an LCD without the use of any printed circuit board (PCB), thus reducing the thickness of the LCD by about the thickness of the conventional PCB. In one embodiment, the LED and submount are mounted so that the submount is opposing the liquid crystal layer side of the LCD, so that the liquid crystal layers provide the mechanical support for the submount and LED die. The LED die (mounted on the submount) may be inserted into a cavity formed in the “top” surface of the light guide, and the top surface of the light guide is abutted against the liquid crystal layers. In such a configuration, the LED light source, including all supporting components, adds no thickness to the LCD. In another embodiment, on the “bottom” surface of the LCD opposing the LED die is an electrically switchable mirror that is either reflective or transparent. In its transparent state, the LED in the LCD may be used as a flash in a cell phone camera, while the LCD may be viewed to take the picture.
摘要:
High power white light LEDs are distributed within a thin reflective cavity. The cavity depth may be less than 3 cm and, in one embodiment, is about 1 cm. A light output surface of the cavity is a flat reflector with many small openings. A small plastic lens is positioned over each opening for causing the light emitted from each opening to form a cone of light between approximately 50-75 degrees. Alternatively, each hole may be shaped to be a truncated cone to control the dispersion. The light emitted by the LEDs is mixed in the cavity by reflecting off all six reflective walls of the cavity. The light will ultimately escape through the many holes, forming a relatively uniform pattern of light on a surface to be illuminated by the luminaire.
摘要:
Amber light LEDs have a higher luminance than red light LEDs. A vast majority of images displayed on television consists of colors that can be created using amber, green and blue components, with only a small percentage of red. In one embodiment of the present invention, the typically red primary light source in a projection display system is augmented with an amber light source. Green and blue primary light sources are also provided. All the light sources are high power LEDs. The particular mixture of the red and amber light is accomplished by varying the duty cycles of the red LEDs and the amber LEDs. If the RGB image to be displayed can be created using a higher percentage of amber light and a lower percentage of red light, the duty cycle of the amber LEDs is increased while the duty cycle of the red LEDs is decreased. Light/pixel modulators for creating the full color image from the three primary light sources are controlled to compensate for the variable amber/red mixture. This technique improves the efficiency of the projection system and generates less heat. A further increase in luminance can be achieved by controlling the light mixture from green and cyan LEDs as a primary light source and/or by controlling the light mixture from blue and blue-cyan LEDs as a primary light source.
摘要:
An illumination device includes a light source, such as one or more light emitting diodes in an array, that produces light having a first wavelength range. A separated wavelength converting element is mounted to receive the light emitted by the light source. The wavelength converting element is physically separated from the light source along the beam path. The wavelength converting element converts the light having a first wavelength range into light having a second wavelength range. In one embodiment, a color separation element is directly coupled to the wavelength converting element. The color separation element is also physically separated from the light source. In another embodiment, the wavelength converting element is held by a heat sink by the sides.
摘要:
Various embodiments of corner-coupled backlights are described, where one or more white light LEDs are optically coupled to a truncated corner edge of a solid rectangular light guide backlight. The one or more LEDs are mounted in a small reflective cavity, whose output opening is coupled to the truncated corner of the light guide. The reflective cavity provides a more uniform light distribution at a wide variety of angles to the face of the truncated corner to better distribute light throughout the entire light guide volume. To enable a thinner light guide, the LED die is positioned in the reflective cavity so that the major light emitting surface of the LED is parallel to the top surface of the light guide. The reflective cavity reflects the upward LED light toward the edge of the light guide.
摘要:
Various embodiments of corner-coupled backlights are described, where one or more white light LEDs are optically coupled to a truncated corner edge of a solid rectangular light guide backlight. The one or more LEDs are mounted in a small reflective cavity, whose output opening is coupled to the truncated corner of the light guide. The reflective cavity provides a more uniform light distribution at a wide variety of angles to the face of the truncated corner to better distribute light throughout the entire light guide volume. To enable a thinner light guide, the LED die is positioned in the reflective cavity so that the major light emitting surface of the LED is parallel to the top surface of the light guide. The reflective cavity reflects the upward LED light toward the edge of the light guide.