Abstract:
A high-to-low level shifter, coupled to a first external signal, for transforming the first external signal into an internal signal, wherein the first external signal substantially switches between a high-voltage-domain high potential and a high-voltage-domain low potential, the internal signal substantially switches between a low-voltage-domain high potential and a low-voltage-domain low potential. The high-to-low level shifter includes: an inverter, for generating a second external signal according to the first external signal, wherein the second external signal is inverse to the first external signal; and a level shifter, for generating the internal signal according to the first external signal and the second external signal.
Abstract:
A voltage controlled oscillator comprising first and second differential delay cells. The first differential delay cell has a first control voltage input terminal. The second differential delay cell is coupled to the first differential delay cell in a loop and has a second control voltage input terminal. The second voltage input terminal is disconnected from the first voltage control input terminal. The first voltage control input terminal receives a first voltage signal, and the second voltage control input terminal receives a second voltage signal different from the first voltage signal.
Abstract:
A low to high voltage conversion output driver. The low to high voltage conversion output driver has an output coupled to a first fixed voltage via a load device and comprises a current source, a low voltage transistor, and a high voltage transistor. The current source has one end coupled to a second fixed voltage. The low voltage transistor has a first terminal coupled to the other end of the current source, a second terminal receiving a low voltage data signal, and a third terminal. The high voltage transistor has a first terminal coupled to the third terminal of the low voltage transistor, a second terminal coupled to a bias source, and a third terminal coupled to the output.
Abstract:
A signal transmitting apparatus being used in a network device includes a voltage-controlled current source for outputting a current signal according to an input digital signal; a line driver for outputting a voltage signal according to the current signal; at least one impedance-matching unit, which is coupled to the line driver, for impedance-matching at the output of the line driver; and a first correction unit, which is coupled to the voltage-controlled current source, for outputting a first correction signal to adjust the current signal outputted from the voltage-controlled current source.
Abstract:
The present invention is to provide a multiple phases switching circuit which is operable with a multiple phase signal generator and a succeeding circuit. The multiple-phase signal generator generates N multiple-phase clock signals. Phases of the multiple-phase clock signals are different. The multiple phases switching circuit comprises an alternative signal generator and a multiplexer. The alternative signal generator outputs an alternative signal according to an up/down switching signal. The multiplexer is coupled to the alternative signal generator for receiving the multiple-phase clock signals and proceeding a glitch/spike preventing process according to the alternative signal so as to output a target clock signal to the succeeding circuit.
Abstract:
The invention relates to a phase-interpolation circuit and a phase-interpolation signal generating circuit applying the phase-interpolation circuit. The phase-interpolation circuit can avoid short-circuit current effectively. In addition, an inter-phase signal can be interpolated between the rising edge and the falling edge of the clock pulse. The phase-interpolation signal generating device can generate multiphase clock signals which not only have linearly distributed phases but also maintain good 50% duty cycle of the multiphase clock signals.
Abstract:
A track and hold amplifier is provided. The track and hold amplifier includes an input node receiving an analog signal, a buffer coupled between a first node and an output node, a first switch coupled between the input node and the first node, a plurality of switching circuits and a voltage generating unit. Each of the switching circuits includes a capacitor coupled between the first node and a second node. The voltage generating unit selectively provides a common signal or a reference signal to the capacitors of the switching circuits, wherein the reference signal is independent from the analog signal.
Abstract:
A sampling circuit includes an amplifier, a sampling capacitor, a feedback capacitor, and a voltage source. The sampling capacitor and the feedback capacitor are coupled to the same input terminal of the amplifier, such that the offset of the amplifier and low-frequency noise can be cancelled. The voltage source can shift the voltage level of an output signal of the sampling circuit by the difference between the input and output common mode voltages of the amplifier, so that an amplifier having different input common mode voltage and output common mode voltage can be adopted, and the capacitance of the sampling capacitor and that of the feedback capacitor can be different, resulting in a non-unit gain.
Abstract:
A transceiver in a full duplex communication system includes a hybrid circuit for transmitting a transmission signal or receiving a receive signal via the channel, the hybrid circuit includes an echo cancellation device for removing transmission signal components from the receive signal; wherein the hybrid circuit outputs a processed receive signal; and a gain amplifier being an OP-RC AGC is directly connected to the hybrid circuit for amplifying the processed receive signal, wherein a first node of the gain amplifier coupled to the echo cancellation device is a virtual ground.
Abstract:
The invention relates to a phase-interpolation circuit and a phase-interpolation signal generating circuit applying the phase-interpolation circuit. The phase-interpolation circuit can avoid short-circuit current effectively. In addition, an inter-phase signal can be interpolated between the rising edge and the falling edge of the clock pulse. The phase-interpolation signal generating device can generate multiphase clock signals which not only have linearly distributed phases but also maintain good 50% duty cycle of the multiphase clock signals.