摘要:
This invention relates to a method for utilizing less purified starch in fermentation processes. One example is a recombinant E. coli containing a exogenous extracellular isoamylase activity that is capable of utilizing small oligomers containing (1,6) linkages (including but not limited to isomaltose and panose) in fermentations to produce useful products. The invention is useful in large-scale industrial biofermentations by reducing the cost of the substrate carbohydrate.
摘要:
Strains of xylose utilizing Zymomonas with improved xylose utilization and ethanol production during fermentation in stress conditions were obtained using an adaptation method. The adaptation involved continuously growing xylose utilizing Zymomonas in media containing high sugars, acetic acid, ammonia, and ethanol.
摘要:
Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.
摘要:
Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.
摘要:
Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.
摘要:
Isolated nucleic acid fragments encoding galactinol synthase are disclosed. Recombinant DNA construct(s) for use in altering expression of endogenous genes encoding galactinol synthase are also disclosed.
摘要:
This invention relates to an isolated nucleic acid fragment encoding a sucrose phosphate synthase. The invention also relates to the construction of a chimeric gene encoding all or a portion of the sucrose phosphate synthase, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the sucrose phosphate synthase in a transformed host cell.
摘要:
Isolated nucleic acid fragments encoding galactinol synthase are disclosed. Recombinant DNA construct(s) for use in altering expression of endogenous genes encoding galactinol synthase are also disclosed.
摘要:
This invention relates to an isolated nucleic acid fragment encoding a sucrose phosphate synthase. The invention also relates to the construction of a chimeric gene encoding all or a portion of the sucrose phosphate synthase, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the sucrose phosphate synthase in a transformed host cell.
摘要:
This invention relates to isolated nucleic acid fragments encoding fructosyltransferases. More specifically, this invention relates to polynucleotides encoding 1-FFTs, 6-SFTs, or 1-SSTs. The invention also relates to the construction of a recombinant DNA constructs encoding all or a portion of the fructosyltransferases, in sense or antisense orientation, wherein expression of the recombinant DNA construct results in production of altered levels of the fructosyltransferases in a transformed host cell.