摘要:
A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
摘要:
Embodiments of the invention generally provide etch or CVD plasma processing methods and apparatus used to generate a uniform plasma across the surface of a substrate by modulation pulsing the power delivered to a plurality of plasma controlling devices found in a plasma processing chamber. The plasma generated and/or sustained in the plasma processing chamber is created by the one or more plasma controlling devices that are used to control, generate, enhance, and/or shape the plasma during the plasma processing steps by use of energy delivered from a RF power source. Plasma controlling devices may include, for example, one or more coils (inductively coupled plasma), one or more electrodes (capacitively coupled plasma), and/or any other energy inputting device such as a microwave source.
摘要:
Bilayer materials are produced by drying a solution of an alkali metal silicate upon the surface of a flexible backing material until a flexible silicate film is produced. The film may be separated from the backing material and incorporated into laminated fire resistant glazings. The alkali metal silicate solution preferably comprise a surfactant. The bilayers may be transported or stored before the flexible silicate film is separated and incorporated into a glazing.
摘要:
A method and apparatus is disclosed to monitor and/or control the electrical states at a workpiece disposed in a plasma chamber that is in electrical communication with an RF signal source over a defined signal path. The method includes ascertaining an impedance of the signal path, sensing electrical characteristics of the RF power at the RF signal source and obtaining values of the electrical states at the workpiece. To provide a more accurate model of the electrical states at the workpiece, the modeling includes information concerning the impedance introduced by the signal path. This technique may be employed to provide feedback control of the RF generator, so that the electrical states may be dynamically adjusted be within predefined, or desired, parameters.
摘要:
Apparatus and method for processing a substrate are provided. The apparatus for processing a substrate comprises: a chamber having a first electrode; a substrate support disposed in the chamber and providing a second electrode; a high frequency power source electrically connected to either the first or the second electrode; a low frequency power source electrically connected to either the first or the second electrode; and a variable impedance element connected to one or more of the electrodes. The variable impedance element may be tuned to control a self bias voltage division between the first electrode and the second electrode. Embodiments of the invention substantially reduce erosion of the electrodes, maintain process uniformity, improve precision of the etch process for forming high aspect ratio sub-quarter-micron interconnect features, and provide an increased etch rate which reduces time and costs of production of integrated circuits.
摘要:
The invention in one embodiment is realized in a plasma reactor for processing a semiconductor workpiece. The reactor includes a vacuum chamber having a side wall and a ceiling, a workpiece support pedestal within the chamber and generally facing the ceiling, a gas inlet capable of supplying a process gas into the chamber and a solenoidal interleaved parallel conductor coil antenna overlying the ceiling and including a first plurality conductors wound about an axis of symmetry generally perpendicular to the ceiling in respective concentric helical solenoids of at least nearly uniform lateral displacements from the axis of symmetry, each helical solenoid being offset from the other helical solenoids in a direction parallel to the axis of symmetry. An RF plasma source power supply is connected across each of the plural conductors.
摘要:
We have discovered a method which permits plasma etching at a constant etch rate. The constant etch rate is achieved by controlling plasma process parameters so that a stable plasma is obtained, with a portion of the power deposited to the plasma being a capacitive contribution, and a portion being an inductive contribution. In particular, a stable plasma may be obtained within two process regions. In the first region, the gradient of the capacitive power to the power applied to the inductively coupled source for plasma generation [∂Pcap/∂PRF] is greater than 0. In the second region, plasma stability is controlled so that [∂Pcap/∂PRF] is less than 0 and so that Pcap
摘要:
The invention is realized in a plasma reactor for processing a semiconductor workpiece. The reactor includes a vacuum chamber having a side wall and a ceiling, a workpiece support pedestal within the chamber and generally facing the ceiling, a gas inlet capable of supplying a process gas into the chamber and a solenoidal interleaved parallel conductor coil antenna overlying the ceiling and including a first plurality conductors wound about an axis of symmetry generally perpendicular to the ceiling in respective concentric helical solenoids of at least nearly uniform lateral displacements from the axis of symmetry, each helical solenoid being offset from the other helical solenoids in a direction parallel to the axis of symmetry. An RF plasma source power supply is connected across each of the plural conductors.
摘要:
A call processing system is disclosed wherein plural platforms are populated with plural voice boards. Each board on the different platforms is populated with different resources, and resources may be allocated from any board and any platform to process calls. In a preferred implementation, a priority system is established so that co-located resources are preferred.