Abstract:
A process including the steps of: carrying out a directional etching in a semiconductor material body to form trenches having a first width; carrying out an isotropic etching of the semiconductor material body under the trenches to form cavities having a width larger than the trenches; covering the walls of the cavities with dielectric material; depositing non-conducting material different from thermal oxide to fill the cavities at least partially, so as to form a single-crystal island separated from the rest of the semiconductor material body. The isotropic etching permits the formation of at least two adjacent cavities separated by a support region of semiconductor material, which is oxidized together with the walls of the cavities to provide a support to the island prior to filling with non-conducting material.
Abstract:
A confocal optical detector including a light source generating a first optical beam along an axis; an optoelectronic sensor; an optical focusing device, which receives and focuses the first optical beam; and a hole, which receives the first optical beam and is arranged between the optoelectronic sensor and the optical focusing device. The optoelectronic sensor is arranged between the light source and the hole. In addition, the optoelectronic sensor and the optical focusing device are aligned along the axis.
Abstract:
An embodiment of array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type and housing an anode region, of a second conductivity type, facing a top surface of the body, a cathode-contact region, having the first conductivity type and a higher doping level than the body, facing a bottom surface of the body, an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the anode region and the cathode-contact region. The insulation region is formed by a first mirror region of polycrystalline silicon, a second mirror region of metal material, and a channel-stopper region of dielectric material, surrounding the first and second mirror regions.
Abstract:
An embodiment of an array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type, housing a first cathode region, of the second conductivity type, and facing a surface of the body, an anode region, having the first conductivity type and a higher doping level than the body, extending inside the body, and facing the surface laterally to the first cathode region and at a distance therefrom, and an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the first cathode region and the anode region. The insulation region is formed by a mirror region of metal material, a channel-stopper region having the second conductivity type, surrounding the mirror region, and a coating region, of dielectric material, arranged between the mirror region and the channel-stopper region.
Abstract:
A bipolar device is integrated in an active layer, wherein delimitation trenches surround respective active areas housing bipolar transistors of complementary types. Each active area accommodates a buried layer; a well region extending on top of the buried layer; a top sinker region extending between the surface of the device and the well region; a buried collector region extending on top of the well region and laterally with respect to the top sinker region; a base region, extending on top of the buried collector region laterally with respect to the top sinker region; and an emitter region extending inside the base region. The homologous regions of the complementary transistors have a similar doping level, being obtained by ion-implantation of epitaxial layers wherein the concentration of dopant added during the growth is very low, possibly zero.
Abstract:
A radiation detector of the ΔE-E type is proposed. The detector is integrated in a chip of semiconductor material with a front surface and a back surface opposite the front surface, the detector having at least one detection cell arranged on the front surface for receiving a radiation to be evaluated, wherein the detector includes: a first region of a first type of conductivity extending into the chip from the front surface to a first depth; a second region of a second type of conductivity extending into the chip from the back surface to a second depth so as to reach the first region; and for each detection cell a third region of the second type of conductivity extending into the first region from the front surface to a third depth lower than the first depth and the second depth, a thin sensitive volume for absorbing energy from the radiation being defined by a junction between the first region and each third region, and a thick sensitive volume for absorbing further energy from the radiation being defined by a further junction between the first region and the second region. For each detection cell the detector further includes insulation means arranged around the third region and extending from the front surface into the first region to an insulation depth comprised between the first depth and the third depth.
Abstract:
A radiation detector of the ΔE-E type is proposed. The detector is integrated in a chip of semiconductor material with a front surface and a back surface opposite the front surface, the detector having at least one detection cell arranged on the front surface for receiving a radiation to be evaluated, wherein the detector includes: a first region of a first type of conductivity extending into the chip from the front surface to a first depth; a second region of a second type of conductivity extending into the chip from the back surface to a second depth so as to reach the first region; and for each detection cell a third region of the second type of conductivity extending into the first region from the front surface to a third depth lower than the first depth and the second depth, a thin sensitive volume for absorbing energy from the radiation being defined by a junction between the first region and each third region, and a thick sensitive volume for absorbing further energy from the radiation being defined by a further junction between the first region and the second region. For each detection cell the detector further includes insulation means arranged around the third region and extending from the front surface into the first region to an insulation depth comprised between the first depth and the third depth.
Abstract:
A bipolar device is integrated in an active layer, wherein delimitation trenches surround respective active areas housing bipolar transistors of complementary types. Each active area accommodates a buried layer; a well region extending on top of the buried layer; a top sinker region extending between the surface of the device and the well region; a buried collector region extending on top of the well region and laterally with respect to the top sinker region; a base region, extending on top of the buried collector region laterally with respect to the top sinker region; and an emitter region extending inside the base region. The homologous regions of the complementary transistors have a similar doping level, being obtained by ion-implantation of epitaxial layers wherein the concentration of dopant added during the growth is very low, possibly zero.
Abstract:
PN junction structure including a first junction region of a first conductivity type, and a second junction region of a second conductivity type, wherein between said first and second junction regions a grid of buried insulating material regions is provided.