Abstract:
According to one aspect, the subject matter described herein includes a method for secure near field communication (NFC) of a non-secure memory element payload. The method includes receiving, at an NFC enabled mobile device and from a content provider, a payload. The method also includes storing the received payload in a non-secure memory element of the NFC enabled mobile device. The method further includes transferring the stored payload from the non-secure memory element of the NFC enabled mobile device to a secure memory element of the NFC enabled mobile device, wherein transferring the stored payload includes loading the stored payload into a secure reloadable payload instance. The method further includes establishing a NFC link between the NFC enabled mobile device and an NFC reader. The method further includes communicating, via the NFC link, the transferred payload from the secure reloadable payload instance to the NFC reader.
Abstract:
A method, a node, and a network include mesh restoration and bandwidth allocation systems and methods for shared risk connection groups for source-based routing control planes. The mesh restoration and bandwidth allocation systems and methods utilize signaling from a node closest to a point of failure to “advise” source nodes about protect paths to be taken for a particular unidirectional or bidirectional connection in the event of mesh restoration. Specifically, the systems and methods include an ability to correlate connection information as Shared Risk Connection Groups (SRCG) to optimally utilize network bandwidth in the event of failure. The systems and methods could also be used to optimally distribute connections in a mesh network as well, trying to utilize maximum bandwidth, in distributed or centralized environments. Effectively, the systems and method distributed path computation in the network away from solely being the responsibility of source nodes.
Abstract:
A unified session detail records of a multi-hop session is provided. The multi-hop session may be established through multiple nodes in a VoIP network. Each node may generate session detail records for the legs of the multi-hop session that are connected to the node. The nodes on the path of the multi-hop call may send the record to a single node to consolidate the session detail records of the legs of the multi-hop call in the single node so that the single node can provide unified session detail records of the multi-hop session. By providing unified session detail records, the user does not need to track down the nodes that are on the path of the multi-hop call to obtain the session detail records of the multi-hop session.
Abstract:
Systems, methods, and computer program products for supporting multiple contactless applications using different security keys on a wireless smart device are disclosed. According to one aspect, the subject matter described herein includes a method for supporting multiple contactless applications using different security keys on a wireless smart device. The method includes, at a wireless smart device configured to communicate with a wireless smart device reader, the wireless device including a plurality of contactless applications and a contactless application memory for use by the plurality of contactless applications, initializing a portion of the memory such that access to the portion of memory requires the use of a shared secret key known to the plurality of contactless applications. The method includes reserving the portion of memory for use by one of the plurality of contactless applications by using the shared secret key to set access privileges for the portion of memory such that access to the portion of memory requires the use of a application-specific secret key associated with the one application and not known to the other applications.
Abstract:
Methods, systems, and computer readable media for redeeming and delivering electronic loyalty reward certificates using a mobile device are disclosed. In one example, the method includes utilizing a loyalty reward certificate selection device to generate electronic loyalty reward certificate selection information and providing the loyalty reward certificate selection information and a recipient mobile device identifier to a loyalty management server. Electronic loyalty reward certificate data derived from the loyalty reward certificate selection information and the recipient mobile device identifier is received from the loyalty management server. The method also includes establishing a communications link with a mobile device corresponding to the recipient mobile device identifier and provisioning the electronic loyalty reward certificate data on the mobile device over the communications link via over the air (OTA) communications.
Abstract:
Methods, systems, and computer readable media for over the air provisioning of soft cards on devices with wireless communications capabilities are disclosed. According to one method, a soft card provisioning application is instantiated on a device with wireless communications capabilities. A card number for a soft card desired to be provisioned on the device is obtained from a user of the device. An issuer identification number retrieved from the card number is communicated to a provisioning configuration server over an air interface. A provisioning issuer server network address is obtained from the provisioning configuration server based on the issuer identification number. The provisioning information server is connected to, and card-issuer-specific challenge information is obtained therefrom. The challenges are presented to the user, and the user's responses to the challenges are received. A connection is made to the provisioning issuer server corresponding to the network address. The challenge responses are communicated to the provisioning issuer server. Soft card image data and personalization data, where the personalization data includes personalized embossed and pre-printed data, are received from the provisioning issuer server over the air interface. The soft card is provisioned for use on the device based on the data received over the air interface.
Abstract:
Methods, systems, and computer program products for interacting with ISO 14443-4 and MIFARE® applications on the same wireless smart device during a common transaction are disclosed. According to one aspect, the method includes detecting and communicating with an ISO 14443-4 application located on a wireless smart device that includes an ISO 14443-4 and a MIFARE® application to perform at least part of the common transaction. Termination of the ISO 14443-4 application is detected, and the MIFARE® application located on the wireless smart device is detected and communicated with for performing at least part of the common transaction.
Abstract:
A process for preparing oligoribo- or oligodeoxyribonucleotides comprising treating an alkanediol or alkanetriol of formula I ##STR1## wherein R.sup.1 =H--(CH.sub.2).sub.n --; andR.sup.2 =--CH.sub.2 OH or --(CH.sub.2).sub.n --Hn=1-4;with 4,4'-dimethoxytrityl chloride to generate a monosubstituted tritylated compound of formula II ##STR2## wherein R.sup.3 =H--(CH.sub.2).sub.p --; andR.sup.4 =-CH.sub.2 OH or --(CH.sub.2).sub.p --H;R.sup.5 is 4,4'-dimethoxytrityl and concommitantly R.sup.6 is hydrogen, orR.sup.5 is hydrogen and concommitantly R.sup.6 is 4,4'-dimethoxytrityl;p=1-4;and treating the compound of formula II with one equivalent of a homobifunctional alkanedioic acid halide, and contacting the resulting mixture with a polymer support bearing hydroxyl or aminoalkyl functionalities.
Abstract:
A scrap particle sorting system and attendant sorting process employs a conveyor for conveying the randomly shaped particles in a random orientation, a position sensor for determining the advancement of the scrap particles in the direction of conveyance by determining the position of the conveyor belt, an image detector for periodically recording the image of a predefined viewing area through which the scrap particles are conveyed, and an image processor for periodic acquisition and processing of the images. The image processor includes logic for defining each image of the viewing area into a matrix of cells, and for each acquired image, analyzing the digital data corresponding to the image to determine for each cell in the matrix whether the pixels in that cell satisfy a predetermined criteria, and establishing a discriminator signal for each cell in the matrix as a function of that analysis. The system employs an image detector controller for receiving a signal from the conveyor position sensor and sending an activation signal to the image processor at timed intervals to acquire sequential image frames which include each of the scrap particles as they are conveyed past the viewing area, and a separator controller for receiving the discriminator signals from the image processor and for sending a control signal to selectively activate the appropriate portion of the separator to eject desired from undesired particles.
Abstract:
A method, a node, and a network include mesh restoration and bandwidth allocation systems and methods for shared risk connection groups for source-based routing control planes. The mesh restoration and bandwidth allocation systems and methods utilize signaling from a node closest to a point of failure to “advise” source nodes about protect paths to be taken for a particular unidirectional or bidirectional connection in the event of mesh restoration. Specifically, the systems and methods include an ability to correlate connection information as Shared Risk Connection Groups (SRCG) to optimally utilize network bandwidth in the event of failure. The systems and methods could also be used to optimally distribute connections in a mesh network as well, trying to utilize maximum bandwidth, in distributed or centralized environments. Effectively, the systems and method distributed path computation in the network away from solely being the responsibility of source nodes.