Abstract:
Techniques for adjusting transmit timing of base stations and user equipments (UEs) in a wireless network are described. In one operating scenario, a femto base station communicates with a femto UE, and a macro base station communicates with a macro UE located within the coverage of the femto base station. In an aspect, the transmit timing of the femto base station may be delayed relative to the transmit timing of the macro base station, e.g., to time align downlink signals from the femto and macro base stations at the femto and macro UEs. In another aspect, the transmit timing of the femto UE may be advanced relative to the transmit timing of femto base station by an amount larger than twice the propagation delay between the femto UE and the femto base station, e.g., to time align uplink signals from the femto and macro UEs at the femto base station.
Abstract:
A method in a mobile terminal for estimating a position of the mobile terminal includes: receiving an expected measurement map indicative of expected measurement values of a parameter; receiving parameters of a matrix corresponding to the expected measurement map; capturing actual measurement values of the parameter for a plurality of communication devices; and utilizing the received parameters and actual measurement values to estimate a position of the mobile terminal, where the expected measurement map includes, for each of a plurality of hypothesis locations (Loc(i,j)), a set of expected measurement values ({right arrow over (μ)}Loc(i,j)) containing expected measurements for the parameter, each of the expected measurements corresponding to a respective communication device of the plurality of communication devices.
Abstract:
Techniques for supporting peer-to-peer (P2P) communication in a wide area network (WAN) are disclosed. In an aspect, interference coordination between P2P devices engaged in P2P communication and WAN devices engaged in WAN communication may be performed based on a network-controlled architecture. For the network-controlled architecture, P2P devices may detect other P2P devices and/or WAN devices and may send measurements (e.g., for pathloss, interference, etc.) for the detected devices to the WAN (e.g., serving base stations). The WAN may perform resource partitioning and/or association for the P2P devices based on the measurements. Association may include selection of P2P communication or WAN communication for a given P2P device. Resource partitioning may include allocation of resources to a group of P2P devices for P2P communication. The WAN may send the results of association and/or resource partitioning to the P2P devices, which may communicate in accordance with the association and/or resource partitioning results.
Abstract:
A method of wireless communication includes generating a position reference signal (PRS) for a transmitter having a same physical cell identity (PCI) as a macro eNodeB. The PRS is based on a virtual cell ID and/or cell global identification (CGI) of the transmitter such that the PRS is different from a PRS of the macro eNodeB. The method also includes transmitting the PRS.
Abstract:
A mobile device capable of communication with wireless access points over wireless local area network (WLAN) channels, including prevailing channels corresponding to a region and non-prevailing channels corresponding to the region, includes: a scanning module configured to passively scan each channel of a subset of channels for a beacon signal; and a control module communicatively coupled to the scanning module and configured to control which channels the scanning module passively scans such that the subset of channels comprises multiple channels of the WLAN channels but less than all of the WLAN channels, and such that the subset of channels includes at least one of the prevailing channels.
Abstract:
A method of wireless communication includes generating a unique position reference signal (PRS) for a remote radio head having a same physical cell identity (PCI) as a macro eNodeB. The unique PRS is based on a virtual cell ID and/or unique cell global identification (CGI) of the remote radio head such that the unique PRS is different from a PRS of the macro eNodeB. The PRS of the macro eNodeB is based on the PCI. The method also includes transmitting the unique PRS.
Abstract:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
Abstract:
An estimated location of an access point is generated based on identification of indoor and outdoor locations and the presumption that most access points are in an indoor location. The estimated location may be produced using location information for the access point and the identification of the indoor and outdoor locations while prioritizing the indoor location to produce the estimated location on or within a boundary of the indoor location. The location information may be, e.g., a preliminary estimated location or wireless signal measurements and associated position fixes for the access point. For example, a preliminary estimated location may be shifted to be on or within the nearest boundary of an indoor location or may be adjusted based on the location information. The estimated location may be calculated directly using weights to bias the calculation of the estimated location to be on or within the boundary of the indoor location.
Abstract:
The disclosure is directed to determining whether or not a mobile device is indoors. The mobile device obtains a position fix based, at least in part, on an outdoor positioning system, and obtains one or more shape-files for one or more objects that are in proximity of the position fix.
Abstract:
Various arrangements for performing location disambiguation are presented. A mobile device may receive a plurality of location hypotheses. The mobile device may also receive an indication of a disambiguation evaluation technique selected from a plurality of disambiguation evaluation techniques. The mobile device may perform the disambiguation evaluation technique using the plurality of location hypotheses. Using the disambiguation evaluation technique, a location hypothesis of the plurality of location hypotheses may be selected by the mobile device as corresponding to the mobile device's location.