Abstract:
A system and method are disclosed that may allow a STA to request one or more non-associated APs to initiate channel sounding operations with the STA. In response to the request, a number of the non-associated APs may send one or more NDPs to the STA. The STA may use the received NDPs to determine a goodput value for each of the number of non-associated APs. The STA may then use the determined goodput values to select one of the number of non-associated APs with which to associate. Thereafter, the STA may initiate an association operation with the selected AP.
Abstract:
Methods, systems, and devices are described for saving power in wireless communications. One aspect includes providing an indication of a sleep duration for transmission to a wireless node, communicating with the wireless node during a target wakeup time (TWT), wherein the communication comprises at least one of providing data for transmission to the wireless node or obtaining data received from the wireless node, and refraining from providing data for transmission to the wireless node for at least the indicated sleep duration based at least in part on timing of the communication. Another aspect includes receiving an indication of a sleep duration from a wireless node, communicating with the wireless node during a time slot of a TWT, and entering a sleep mode for the indicated sleep duration based at least in part on timing of the communication with the wireless node during the time slot of the TWT.
Abstract:
A method and apparatus for concurrent wireless communications on multiple channels of the same frequency band. A wireless device receives a first data signal via a first transceiver chain while concurrently initiating a transmission of a second data signal via a second transceiver chain of the wireless device. The wireless device suspends updates to one or more tracking loops of the first transceiver chain in response to initiating the transmission of the second data signal. The updates to the one or more tracking loops may be suspended prior to transmitting the second set of data from the second transceiver chain. The wireless device may subsequently resume updates to the one or more tracking loops of the first transceiver chain after completing the transmission of the second data signal.
Abstract:
Methods, apparatus, and computer-readable media for wireless communication may involve techniques for throughput estimation. An expected air time parameter may be used as a parameter for estimating throughput. The expected air time parameter may be indicative of an estimated air time fraction obtainable for communications using an access point (AP), for example, between a wireless station (STA) and the AP. Either the expected air time parameter or an estimated air time fraction determined (e.g., calculated) from the expected air time parameter may be transmitted from the AP to the STA (or other communication device) to allow the STA (or other communication device) to determine an estimated throughput for communications using the AP.
Abstract:
A method of providing rate adaptation in a multi-user wireless communication system including single-user beamforming (SU-BF) and multi-user multiple-input multiple-output (MU-MIMO) is described. In this method, a master rate, which is a modulation and coding scheme (MCS) for the SU-BF, is determined. An MCS for each transmit mode is derived from the master rate using a rate mapping. Using the results from the mapping, the master rate, instead of the MCS for each transmit mode, is tracked. In one embodiment, a mapping calibration is periodically performed.
Abstract:
A method of providing aggregated MAC protocol data unit (AMPDU) duration control in a wireless communication device includes setting an AMPDU duration. Pass/fail statistics are collected for each MPDU of an AMPDU in a time window, W. A packet error rate (PER) difference is calculated between first and last sets of MPDUs for each AMPDU in the window. An average PER difference is calculated across all AMPDUs in the window. When the average PER difference is greater than a first threshold, then the AMPDU duration is decreased. When the difference is less than a second threshold, then the AMPDU duration is increased. When the difference is within the first and the second thresholds, then the method returns to the step of collecting for a next time window. The AMPDU duration can also be adjusted based on detected Doppler and line-of-sight transmissions.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
A wireless device is configured to switch data rates to account for temporary channel conditions or device configuration errors. Pre-selected data rates, more likely to achieve maximum goodput, are stored in a data rate table. The data rate table contains candidate data rates for each pre-selected data rate in the data rate table. When probe transmissions using the preselected data rates fail, dynamic rate probing is utilized to determine a possible cause and extent of the problem. The dynamic rate probing scheme transmits probe transmissions using the candidate data rates and tracks success or failure of these probe transmissions. An analysis of the probe transmissions is used to indicate a possible cause and/or extent of the problematic condition and to determine whether there is a need to reconfigure the data rates in the data rate table.
Abstract:
A wake-up radio is configured to scan for transmissions while the radio receiver is in sleep mode. The wake-up radio detects incoming RF transmissions intended for the radio receiver by analyzing data frame characteristics in an incoming RF transmission. The data frame characteristics may contain a signature code that is unique to the radio receiver. The signature code may be based on the time duration of a sequence of orthogonal frequency division multiplex (OFDM) symbols received in a clear to send to self (CTS2S) transmission or a time duration of short interframe spaces (SIFS) used to transmit the data frames.
Abstract:
A method of providing rate adaptation in a multi-user wireless communication system including single-user beamforming (SU-BF) and multi-user multiple-input multiple-output (MU-MIMO) is described. In this method, a master rate, which is a modulation and coding scheme (MCS) for the SU-BF, is determined. An MCS for each transmit mode is derived from the master rate using a rate mapping. Using the results from the mapping, the master rate, instead of the MCS for each transmit mode, is tracked. In one embodiment, a mapping calibration is periodically performed.