Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
A beacon message is wirelessly transmitted from a first device. The first device receives a first response to the beacon message, wherein the first response includes identification values associated with a personal identification device. A second device associated with the personal identification device is communicated with. The personal identification device is authenticated based, at least in part, on the identification values and the communication with the second device.
Abstract:
The present invention aims at eliminating the effects of frequency offsets between two transceivers by adjusting frequencies used during transmission. In this invention, methods for correcting the carrier frequency and the sampling frequency during transmission are provided, including both digital and analog implementations of such methods. The receiver determines the relative frequency offset between the transmitter and the receiver, and uses this information to correct this offset when the receiver transmits its data to the original transmitter in the return path, so that the signal received by the original transmitter is in sampling and carrier frequency lock with the original transmitter's local frequency reference.