Abstract:
Functionality can be implemented to calibrate the output transmit power of a power amplifier of a network device without the use of test equipment. An RF signal can be transmitted at the saturated output power (of a power amplifier) from a transmitter unit to a receiver unit of the network device via a loopback path. A received power of the RF signal received via the loopback path can be measured. The loopback gain associated with the network device is determined based on the saturated output power and the measured received power. The output transmit power can be calibrated by iteratively decreasing the output transmit power by an unknown value, transmitting a new RF signal via the loopback path at the decreased output transmit power, measuring the new received power, and calculating the decreased output transmit power using the loopback gain and the measured new received power.
Abstract:
Methods and apparatuses are described in which dynamic voltage and frequency scaling may be used to save power when processing packets in a wireless communications device. In some cases, inframe detection may allow the device to determine whether to transition from a first (e.g., lower) voltage level to a second (e.g., higher) voltage level to process one or more packets of a received frame. For some packet types the first voltage level may be maintained. In other cases, the device may determine a bandwidth to use from among multiple bandwidths supported by the device. The bandwidth may be determined based on channel conditions. A voltage level may be identified that corresponds to the determined bandwidth and a processing voltage may be scaled to the identified voltage level. The device may be configured to operate in wireless local area network (WLAN) and/or in a cellular network (e.g., LTE).
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
Abstract:
One aspect of an apparatus for wireless communications is disclosed. The apparatus includes a controller, a first transceiver, and a second transceiver. The first transceiver is configurable by the controller to support first communications through a cellular network to at least one of a packet-based network and a circuit-switched network. The second transceiver configurable by the controller to operate with the first transceiver to support first communications through the cellular network in a first mode and support second communications through an access point to the packet-based network in a second mode. In an aspect, the second transceiver is further configured to switch from the first mode to the second mode by moving its wireless connection from the cellular network to the access point while maintaining a network-layer connection to the cellular network.
Abstract:
In an aspect a transceiver is provided. The transceiver may include a plurality of local oscillator (LO) generators configured to generate a plurality of LO signals, respectively, for mixing with one or more communication signals. The transceiver also includes a first synthesizer configured to generate a first reference signal and a second synthesizer configured to generate a second reference signal. The transceiver also includes a distribution circuit. The distribution circuit is configured to switch an input to at least one of the LO generators between the first and second reference signals for tuning each of the at least one of the LO generators between two different LO frequencies and to input to the other ones of the LO generators the first reference signal for tuning each of the other ones of the LO generators to an LO frequency.
Abstract:
A method for wireless communication is described herein. The method may include advertising support by a wireless device for a first bandwidth mode and a second bandwidth mode, wherein the first bandwidth mode utilizes a single channel and the second bandwidth mode utilizes channel bonding between a plurality of channels. The method may also include switching a current bandwidth mode of the wireless device from one of the bandwidth modes to the other of the bandwidth modes and adjusting a number of multiple-input, multiple-output (MIMO) spatial streams supported by the wireless device in response to the switching.
Abstract:
In an aspect a transceiver is provided. The transceiver may include a plurality of local oscillator (LO) generators configured to generate a plurality of LO signals, respectively, for mixing with one or more communication signals. The transceiver also includes a first synthesizer configured to generate a first reference signal and a second synthesizer configured to generate a second reference signal. The transceiver also includes a distribution circuit. The distribution circuit is configured to switch an input to at least one of the LO generators between the first and second reference signals for tuning each of the at least one of the LO generators between two different LO frequencies and to input to the other ones of the LO generators the first reference signal for tuning each of the other ones of the LO generators to an LO frequency.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
A method for wireless communication is described herein. The method may include advertising support by a wireless device for a first bandwidth mode and a second bandwidth mode, wherein the first bandwidth mode utilizes a single channel and the second bandwidth mode utilizes channel bonding between a plurality of channels. The method may also include switching a current bandwidth mode of the wireless device from one of the bandwidth modes to the other of the bandwidth modes and adjusting a number of multiple-input, multiple-output (MIMO) spatial streams supported by the wireless device in response to the switching.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.