摘要:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
摘要:
An integrated circuit is provided with an independent power framework for a first subsystem and another independent power framework for a processor subsystem that receives messages from the first subsystem.
摘要:
An integrated circuit is provided with an independent power framework for a first subsystem and another independent power framework for a processor subsystem that receives messages from the first subsystem.
摘要:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
摘要:
Systems and methods for optimizing a memory rail voltage are disclosed. The system may comprise a plurality of sensor cells, each sensor cell comprising at least one bitcell replica having a predefined data retention voltage higher than a data retention voltage of a similar memory bit cell. The sensor cells may be configured to provide an output based on a sensor rail voltage higher than the predefined data retention voltage. The system may further comprise a controller operably coupled to a power management circuit and configured to adjust the memory rail and the sensor rail voltages. The controller may be further configured to compare an expected value to the sensor indication. The controller may decrease the sensor rail voltage and the memory rail voltage based on the indication until a sensor indicates a bitcell replica has failed, indicating an optimum memory rail voltage has been reached.
摘要:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
摘要:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.