摘要:
A water-cooled stator bar clip for electrical generators and a method for applying a corrosion-resistant protective coating, preferably Sc, Ti, Cr, Zr, Nb, Mo, Hf, Ta, W, Ni, and Al, and their alloys or oxides to existing stator bar end fittings in order to significantly reduce the possibility of leaks through the brazed connections of the copper stator bar end connections. The coatings can be applied locally using various known physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”) or other direct coating techniques known in the art. For example, the coatings can be applied using ion plasma deposition, sputtering or wire arc techniques (all PVD processes) or by using electroplating, high velocity oxygen free (“HVOF”) deposition, DC arc or electroless plating. Preferably, the coatings are applied either to new stator bar clips or to existing clips in the field using a known pencil coater technique. After being deposited, the metallic coatings form a protective oxide layers over the existing copper brazed joint after being exposed to a water environment, thereby protecting the chemical and structural integrity of the underlying copper brazed joint.
摘要:
An apparatus for cathodic arc coating is provided. The apparatus includes: a vacuum chamber which includes an anode; a power supply; and a cathode target connected to the power supply. The cathode target has a channeled back surface for improving heat transfer from the cathode target. In the preferred embodiment, the cathode target also includes a conductor segment connecting the cathode target to the power supply of the cathodic arc coating apparatus for conducting the increased current capacity of the cathode target and a cooling block in contact with the cathode target to further improve the heat transfer from the cathode target.
摘要:
Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10−12 s−1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
摘要:
A device includes a first thermally conductive substrate having a first patterned electrode disposed thereon and a second thermally conductive substrate having a second patterned electrode disposed thereon, wherein the first and second thermally conductive substrates are arranged such that the first and second patterned electrodes are adjacent to one another. The device includes a plurality of nanowires disposed between the first and second patterned electrodes, wherein the plurality of nanowires is formed of a thermoelectric material. The device also includes a joining material disposed between the plurality of nanowires and at least one of the first and second patterned electrodes.
摘要:
In accordance with the present disclosure, a receiver panel is provided that includes multiple thermally conductive nanostructures. The thermally conductive nanostructures may be provided on a substrate that supports the multiple thermally conductive nanostructures. In one embodiment, the thermally conductive nanostructures may be substantially orthogonal with respect to the surface of the substrate.
摘要:
Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10−12 s−1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
摘要:
A method of making a nanostructure array including disposing a masking material on a nanoporous template such that a first number of the plurality of nanopores are fully coated while a second number of the plurality of nanopores are not-fully coated by the masking material is provided. The method includes forming the nanostructures within the plurality of nanopores that are not-fully coated by the masking material. A nanostructure array fabricated in accordance to above said method and devices based on the nanostructure array is also provided.
摘要:
A solar cell having foil electrodes. Specifically, a metal foil is implemented to form electrodes providing a reduced electron path from a dye-sensitized semiconductor material to the electrodes. In one embodiment, nanowires extending from the substrate on which the solar cell is formed are provided. In another embodiment, cavities are formed in a sheet of conductive foil by oxidation, thereby forming a semiconductive material. The semiconductive material is sensitized with a dye and an electrolyte solution is disposed in the cavities, thereby forming an array of dye-sensitized solar cells.
摘要:
A method for heat treating titanium-alloy articles in a vacuum furnace includes a step of first determining, for a first set of titanium articles in a first vacuum furnace and for a first set of heat treatment conditions, a minimum surface area of the first set of titanium articles associated with an acceptable alpha case formation for the first set of titanium articles. There is a second determining, for a second set of titanium articles in a second vacuum furnace and for a second set of heat treatment conditions, of a minimum surface area of a second set of titanium articles associated with an acceptable alpha case formation for the second set of titanium articles, responsive to the value of the minimum surface area of the first set of titanium articles. There follows a heat treating of a third set of titanium articles in the second vacuum furnace and for the second set of heat treatment conditions, where the surface area of the third set of titanium articles is not less than the value of the minimum surface area of the second set of titanium articles.
摘要:
A sensor for measuring electrochemical corrosion potential, and a method for manufacturing a sensor, the sensor comprising a tubular ceramic probe having a closed tip at one end, the probe at least partially filled with a powder comprising metal and metal oxide; a metal support tube having one end receiving an opposite end of the probe, and joined thereto by a braze joint therewith; an electrical conductor extending through the support tube and into the probe, and having an end buried in the powder for electrical contact therewith; and a protective band bridging the probe and tube at the joint for sealing thereof, the protective band consisting essentially of a metallic coating.