Abstract:
A method for processing and imaging a first and second plurality of samples, comprising processing at least one sample from the first plurality of samples, imaging the at least one sample from the first plurality of samples, while being capable of simultaneously processing at least one sample from the second plurality of samples; and imaging the at least one processed sample from the second plurality of samples.
Abstract:
A closed loop automated method for staining of a biological sample is provided. The method comprises providing a biological sample, staining at least a portion of the biological sample by flowing in a reagent, monitoring one or more optical characteristics of the biological sample, and calculating a figure of merit based on at least one of the optical characteristics. An automated device for iterative staining of a biological sample is also provided.
Abstract:
A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. Methods for fabricating the subassembly and assembled flow cell are also provided. The method includes the steps of adhering a gasket layer to a substrate layer, wherein the gasket layer may contain enclosed features and adhering an adherent layer to the gasket layer. The subassembly may be sealed against a solid support to form a flow cell.
Abstract:
A micro electromechanical system switch having an electrical pathway is presented. The switch includes a first portion and a second portion. The second portion is offset to a zero overlap position with respect to the first portion when the switch is in open position (or in the closed position depending on the switch architecture). The switch further includes an actuator for moving the first portion and the second portion into contact.
Abstract:
A micro electromechanical system switch having an electrical pathway is presented. The switch includes a first portion and a second portion. The second portion is offset to a zero overlap position with respect to the first portion when the switch is in open position (or in the closed position depending on the switch architecture). The switch further includes an actuator for moving the first portion and the second portion into contact.
Abstract:
A method for processing and imaging a first and second plurality of samples, comprising processing at least one sample from the first plurality of samples, imaging the at least one sample from the first plurality of samples, while being capable of simultaneously processing at least one sample from the second plurality of samples; and imaging the at least one processed sample from the second plurality of samples.
Abstract:
An open top microfluidic device comprising a microfluidic slide carrier and one or more multiplexing stations is provided which allows sequential staining and imaging without the need for using or removing a coverslip on a mounted biological sample.
Abstract:
A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. Methods for fabricating the subassembly and assembled flow cell are also provided. The method includes the steps of adhering a gasket layer to a substrate layer, wherein the gasket layer may contain enclosed features and adhering an adherent layer to the gasket layer. The subassembly may be sealed against a solid support to form a flow cell.
Abstract:
Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10−12 s−1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
Abstract:
A closed loop automated method for staining of a biological sample is provided. The method comprises providing a biological sample, staining at least a portion of the biological sample by flowing in a reagent, monitoring one or more optical characteristics of the biological sample, and calculating a figure of merit based on at least one of the optical characteristics. An automated device for iterative staining of a biological sample is also provided.