Abstract:
The present invention provides efficient methods to form a high solids content polymeric polyacid or a comb polymer useful as a superplasticizer or dispersant which comprise heating to from 80 to 100 C for a first time period, and then, sequentially, heating to a second temperature of from 150 to 250° C. for a second time period a wet reaction mixture having a solids content of from 80 to 99 wt. % and comprising from 15 to 60 wt. % of one or more ethylenically unsaturated acid or a salt thereof, from 37 to 76.99 wt. % of one or more polyether polyols, alkyl polyether polyols, polyether amines or alkyl polyether amines in the presence of (i) from 0.01 to 1 wt. %, of one or more water soluble radical initiators or redox pairs and (ii) from 2 to 22 wt. % of one or more phosphorus oxide containing compounds, all weights based on the total weight of the wet reaction mixture.
Abstract:
The present invention provides telomeric copolymers of acrylic and methacrylic acid which further comprise an olefin polymerization residue and have one or more phosphorus acid groups wherein the phosphorus acid group comprises one or more phosphorus atom in the +1 oxidation state or in the +3 oxidation state, or both. In addition the present invention provides methods of making the telomeric copolymers comprising aqueous solution copolymerizing a monomer mixture comprising acrylic acid and methacrylic acid in the presence of a phosphorus acid group containing reactant having a phosphorus atom in the +1 oxidation state, and thermally treating the resulting telomeric copolymer at 175° C. or higher for a sufficient time to decarboxylate the copolymer.
Abstract:
The present invention provides compositions of phosphorus acid group and methacrylic anhydride group containing telomeric copolymers of methacrylic acid having an as yet never achieved amount of more than 70 wt. %, or, preferably, 72 wt. % or more, and up to 99 wt. %, of methacrylic anhydride groups based on the total weight of polymerized methacrylic acid and/or salt units. The compositions enjoy higher thermal stability than was previously achieved and enable easer processing that does not require the removal of liquids or solvents.
Abstract:
The invention provides aqueous thermosetting binder compositions exhibiting both of improved flame retardation and wet tensile strength comprising a reducing sugar, a diprimary diamine or a polyprimary diamine, a phosphorus acid salt and from 3 to 20 wt. %, based on total solids, of an aqueous polymeric polyacid solution polymer containing phosphorus or its salt, wherein the aqueous thermosetting binder composition comprises from 0.7% P (s/s) to 5% P (s/s).
Abstract:
The present invention provides compositions for and methods of rapidly making roof coatings, wherein two-component aqueous compositions comprise a component one that has a pH of from 7.5 to 10 (i) one or more emulsion copolymers having a glass transition temperature (Tg) as determined by differential scanning calorimetry (DSC) of from −45° C. to 0° C., and (ii) one or more anionic surfactants, and, in a separate component, (iii) an aqueous acid chosen from a (poly)carboxylic acid or polymeric polyacid. The compositions have little or no ammonia, set within 10 minutes, preferably, a minute or less, and allow one to apply a film as thick as from 0.3 to 3 mm in a single application by co-spraying the two-components or applying them sequentially in one or several passes over a roofing substrate.
Abstract:
The present invention provides aqueous compositions for treating fluff pulp comprising (i) one or more acrylic acid polymers containing phosphinate groups and having a weight average molecular weight of from 1,000 to 6,000 and (ii) from 5 to 50 wt. %, based on the total solids weight of the aqueous compositions, of one or more polyethylene glycols, having a formula weight of from 150 to 7,000, or, preferably, from 200 to 600. The present invention also provides individualized, intrafiber crosslinked cellulosic fibers comprising the cellulosic fiber and, in cured form, the aqueous compositions, as well as methods of making the individualized, intrafiber crosslinked cellulosic fibers.
Abstract:
The present invention provides thermosetting aqueous binder compositions comprising one or more reducing sugar, one or more diprimary diamine or poly(primary amine), and from 7 to 45 wt. %, based on total solids, of one or more polysaccharide having a dextrose equivalent (DE) value of from 5 to 30. The compositions provide treated articles, such as fiberglass mat. The binders provide articles having a dramatically reduced binder weight loss upon cure and a reduction in cure energy needed to achieve early dry strength.
Abstract:
The present invention provides fiber cement articles, such as roof tiles having improved impact and hail resistance and methods for making them. The fiber cement articles comprise cement, an optional filler, reinforcing fibers, such as poly(vinyl alcohol) fibers or a mixture of cellulosic and synthetic fibers, one or more core-shell aqueous emulsion polymers having a crosslinked rubbery core with a calculated glass transition temperature (calculated Tg) of from −20 to −140° C., and an at least partially grafted acrylic or vinyl shell polymer having a calculated Tg of from 20 to 170° C., and having a Z-average primary particle size of from 55 to 800 nm, or, preferably, from 140 to 650 nm. The solids weight ratio of the crosslinked rubbery core to the shell of the core-shell aqueous emulsion polymer may range from 85:20 to 97:3.
Abstract:
The present invention provides polymer compositions of one or more phosphorus acid group containing, polymers of six-membered cyclic methacrylic acid imide comprising a backbone polymer having one or more one methacrylic acid in polymerized form or its salt, quaternary ammonium group, ester side chain group or amide side chain group, wherein the backbone polymers comprise from 60 to 100 wt. %, based on the total weight of monomers used to make the backbone polymer, of total methacrylic acid polymerized units, regardless of their form, and wherein a total of from 7.5 to 95 wt. %, or, preferably, less than 70 wt. % of the methacrylic acid polymerized units comprise methacrylic anhydride groups or six-membered cyclic methacrylic imide groups. The polymer can be readily tailored to boost modulus and modify surface energies when added to polymers like polyolefins, and to make them compatible with other polymers, like polyamide.
Abstract:
The present invention provides comb polymer compositions comprising phosphorus acid group containing backbone polymers of six-membered cyclic methacrylic imide having one or more side chain ether group containing N-substituent chosen from an ether group, a polyether group, an etheramine group, a polyetheramine group, an ether group crosslinking the backbone polymer chains, and a polyether group crosslinking the backbone polymer chains. The backbone polymers comprise from 60 to 100 wt. %, based on the total weight of monomers used to make the backbone polymer, of methacrylic acid polymerized units, regardless of their form, and from 7.5 to 95 wt. % of such polymerized units as methacrylic anhydride groups or six-membered cyclic methacrylic imide groups.