Abstract:
A low smoke density thermoplastic composition comprising, based on the total weight of the thermoplastic composition, 70 to 95 wt % of a polycarbonate copolymer comprising first repeating units and second repeating units, wherein the first repeating units are not the same as the second repeating units, and wherein the first repeating units are bisphenol carbonate units of the formula wherein Ra and Rb are each independently C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, p and q are each independently 0 to 4, and Xa is a single bond, —O—, —S—, —S(O)—, —S(O)2—, —C(O)—, a C1-11 alkylidene of formula —C(Rc)(Rd)— wherein Rc and Rd are each independently hydrogen or C1-10 alkyl, or a group of the formula —C(═Re)— wherein Re is a divalent C1-10 hydrocarbon group; and the second repeating units comprise bisphenol carbonate units that are not the same as the first repeating bisphenol carbonate units, siloxane units, arylate ester units, or a combination of arylate ester units and siloxane units; and 5 to 30 wt % of a polyetherimide based on the weight of the composition, wherein an article molded from the composition has a smoke density (Ds-4) value of equal to or less than 300 as measured by ISO 5659-2 on a 3 mm thick plaque.
Abstract:
A composition includes a polycarbonate resin, a heat stabilizer, and an acid stabilizer. An article formed from the composition, when tested using a 2.5 mm color plaque, includes a level of free —OH groups that is less than a level of free —OH groups of a reference article injection molded from a substantially similar reference composition consisting essentially of the polycarbonate resin without the heat stabilizer and the acid stabilizer. Methods for forming the molded article in accordance with the above are also described.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
A thermoplastic composition comprises 10 to 50 wt. % of a poly(arylene ether-sulfone), or a combination comprising a poly(arylene ether-sulfone) and a poly(etherimide), 35 to 90 wt. % of a poly(carbonate-siloxane), 0.5 to 25 wt. % of a poly(carbonate-arylate ester) compatibilizer, a poly(carbonate-arylate ester-siloxane) compatibilizer, or a combination comprising at least one of the foregoing, and up to 15 wt. % of an ultraviolet light stabilizer; wherein a sample of the composition has a notched Izod impact energy of at least 200 J/m at 23° C.; and a 40% higher notched Izod impact energy value compared to the composition without the compatibilizer component.
Abstract:
A low smoke density thermoplastic composition comprising, based on the total weight of the thermoplastic composition, 70 to 95 wt % of a polycarbonate copolymer comprising first repeating units and second repeating units, wherein the first repeating units are not the same as the second repeating units, and wherein the first repeating units are bisphenol carbonate units of the formula wherein Ra and Rb are each independently C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, p and q are each independently 0 to 4, and Xa is a single bond, —O—, —S—, —S(O)—, —S(O)2—, —C(O)—, a C1-11 alkylidene of formula —C(Rc)(Rd)— wherein Rc and Rd are each independently hydrogen or C1-10 alkyl, or a group of the formula —C(═Re)— wherein Re is a divalent C1-10 hydrocarbon group; and the second repeating units comprise bisphenol carbonate units that are not the same as the first repeating bisphenol carbonate units, siloxane units, arylate ester units, or a combination of arylate ester units and siloxane units; and 5 to 30 wt % of a polyetherimide based on the weight of the composition, wherein an article molded from the composition has a smoke density (Ds-4) value of equal to or less than 300 as measured by ISO 5659-2 on a 3 mm thick plaque.
Abstract:
A aircraft component comprises a polycarbonate composition comprising: a first polycarbonate selected from a polycarbonate homopolymer, a poly(aliphatic ester-carbonate), or a combination thereof; a second polymer different from the first polycarbonate, the second polymer comprising a poly(carbonate-siloxane) copolymer, a polydialkylsiloxane, a silicone graft copolymer, or a combination thereof, wherein siloxane units in the second polymer are present in the polycarbonate composition in an amount of 0.3 to 3 wt. %, based on the total weight of the polycarbonate composition; and 10 to 50 wt. % of glass fiber, based on the total weight of the polycarbonate composition.
Abstract:
Disclosed herein are polydiorganosiloxane-polycarbonate block copolymers having desirable optical properties, and methods of making such block copolymers. Also disclosed herein are analytical methods for evaluating hydroxyaryl end-capped polydialkylsiloxane monomers.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
Interior railway components (seat components and claddings) comprise a thermoplastic composition comprising: a first polymer comprising bisphenol A carbonate units and monoaryl arylate units, or a second polymer comprising bisphenol A carbonate units, monoaryl arylate units, and siloxane units, or a combination comprising at least one of the foregoing; and a polyetherimide; wherein a sample of the thermoplastic composition has: a smoke density after 4 minutes (Ds-4) of ≤150 measured in accordance with ISO 5659-2 on a 3 mm thick plaque, an integral of the smoke density as a function of time up to 4 minutes (VOF4)≤300 measured in accordance with ISO 5659-2, a maximum average heat release (MAHRE) of ≤300 90 kW/m2 measured in accordance with ISO 5660-1 on a 3 mm thick plaque, and a ductility in multiaxial impact of 80 to 100%, measured in accordance with ISO 6603.