Abstract:
The invention is directed to a mass transit vehicle component, to a method for preparing a mass transit vehicle component with improved smoke density and/or heat release performance, to the use of a component in mass transit vehicles, and to a use of a pellet or composition. The mass transit vehicle component of the invention is prepared from i) pellets of a flame retardant glass fibre reinforced polypropylene composition; ii) a composition comprising: a) pellets of a fibre reinforced polypropylene composition; and b) a flame retardant polypropylene dilution composition; or iii) a composition comprising: a) pellets of a flame retardant fibre reinforced polypropylene composition, and b) a flame retardant polypropylene dilution composition.
Abstract:
A thermoplastic composition includes a poly(carbonate-arylate ester); and an organophosphorus compound in an amount effective to provide 0.1 to 1.0 wt % phosphorus based on the total weight of the composition, wherein an article molded from the composition has a smoke density after four minutes (Ds-4) of less than or equal to 300 determined according to ISO 5659-2 on a 3 mm thick plaque and a maximum average rate of heat release emission (MAHRE) of less than or equal to 90 kW/m2 determined according to ISO 5660-1 on a 3 mm thick plaque.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
A thermoplastic composition comprises 10 to 50 wt. % of a poly(arylene ether-sulfone), or a combination comprising a poly(arylene ether-sulfone) and a poly(etherimide), 35 to 90 wt. % of a poly(carbonate-siloxane), 0.5 to 25 wt. % of a poly(carbonate-arylate ester) compatibilizer, a poly(carbonate-arylate ester-siloxane) compatibilizer, or a combination comprising at least one of the foregoing, and up to 15 wt. % of an ultraviolet light stabilizer; wherein a sample of the composition has a notched Izod impact energy of at least 200 J/m at 23° C.; and a 40% higher notched Izod impact energy value compared to the composition without the compatibilizer component.
Abstract:
A low smoke density thermoplastic composition comprising, based on the total weight of the thermoplastic composition, 70 to 95 wt % of a polycarbonate copolymer comprising first repeating units and second repeating units, wherein the first repeating units are not the same as the second repeating units, and wherein the first repeating units are bisphenol carbonate units of the formula wherein Ra and Rb are each independently C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, p and q are each independently 0 to 4, and Xa is a single bond, —O—, —S—, —S(O)—, —S(O)2—, —C(O)—, a C1-11 alkylidene of formula —C(Rc)(Rd)— wherein Rc and Rd are each independently hydrogen or C1-10 alkyl, or a group of the formula —C(═Re)— wherein Re is a divalent C1-10 hydrocarbon group; and the second repeating units comprise bisphenol carbonate units that are not the same as the first repeating bisphenol carbonate units, siloxane units, arylate ester units, or a combination of arylate ester units and siloxane units; and 5 to 30 wt % of a polyetherimide based on the weight of the composition, wherein an article molded from the composition has a smoke density (Ds-4) value of equal to or less than 300 as measured by ISO 5659-2 on a 3 mm thick plaque.
Abstract:
A aircraft component comprises a polycarbonate composition comprising: a first polycarbonate selected from a polycarbonate homopolymer, a poly(aliphatic ester-carbonate), or a combination thereof; a second polymer different from the first polycarbonate, the second polymer comprising a poly(carbonate-siloxane) copolymer, a polydialkylsiloxane, a silicone graft copolymer, or a combination thereof, wherein siloxane units in the second polymer are present in the polycarbonate composition in an amount of 0.3 to 3 wt. %, based on the total weight of the polycarbonate composition; and 10 to 50 wt. % of glass fiber, based on the total weight of the polycarbonate composition.
Abstract:
A copolycarbonate optical article comprises a polycarbonate composition including: a copolycarbonate having: 2 to 60 mol % of phthalimidine carbonate units, 2 to 90 mol % of high heat carbonate units, and optionally 2 to 60 mol % of bisphenol A carbonate units. The copolycarbonate has less than 100 ppm of each of phthalimidine, high heat bisphenol, and bisphenol A monomers, and less than 5 ppm of various ions, and is prepared from monomers each having a purity of at least 99.6%. The polycarbonate composition has a glass transition temperature of 200° C. to and a yellowness index of less than 30.
Abstract:
A thermoplastic composition comprising, based on the total weight of the thermoplastic composition, 5 to 30 wt. % of a poly(arylene ether-sulfone); and 50 to 95 wt. % of a polycarbonate component comprising a poly(carbonate-siloxane) and optionally a polycarbonate homopolymer; wherein a sample of the composition has a notched Izod impact value of greater than or equal to 30 kJ/m2; a tensile yield strength retention of 80% and higher after exposure of an ISO tensile bar for 24 hours to sunscreen under 0.5% strain compared to a non-exposed reference; and an elongation at break retention of 80% and higher after exposure of an ISO tensile bar for 24 hours to sunscreen under 0.5% strain compared to a non-exposed reference.
Abstract:
The present disclosure describes polycarbonate-siloxane blends with a constant percentage of siloxane in the formulations. The polycarbonate-siloxane blends achieve improved impact properties, as well as the ability to achieve deep black and bright white colors.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.