Abstract:
A composite electronic component may include: a composite body including a capacitor formed of a ceramic body in which a plurality of dielectric layers and first and second internal electrodes are laminated, and an inductor formed of a magnetic body including a coil; an input terminal disposed on a first end surface of the composite body; output terminals including a first output terminal disposed on a second end surface of the composite body and a second output terminal disposed on the second end surface of the composite body; and a ground terminal disposed on one or more of upper and lower surfaces and the first end surface of the capacitor of the composite body. The capacitor is adjacent to the inductor.
Abstract:
Disclosed herein is an inductor element having an internal electrode in which a first plating layer and a second plating layer having a coil shape are embedded, the inductor element including: a first plating layer formed on a support member; an insulating layer covering the first plating layer and provided with an opening which exposes an upper surface of the first plating layer; and a second plating layer filled in the opening, whereby the inductor element in which the internal electrode having a high aspect ratio is embedded is implemented.
Abstract:
A magnetic paste composition for a chip electronic component, a chip electronic component, and a manufacturing method therof are provided. The chip electronic component is capable of being manufactured in a thin-film to allow for thinness and miniaturization thereof, thereby preventing a deterioration in efficiency thereof due to core loss even under high frequency and high current conditions. The chip electronic component exhibits high permeability, high efficiency, and a high Isat value by decreasing porosity.
Abstract:
There is provided a power inductor, including a magnetic body including a substrate having coils formed thereon, a first metal-polymer complex layer formed on upper and lower surfaces of the substrate, and a second metal-polymer complex layer formed on upper and lower surfaces of the first metal-polymer complex layer and including a higher content of a polymer than that included in the first metal-polymer layer.
Abstract:
Disclosed herein are a metal-polymer complex film for an inductor and a method for manufacturing an inductor, the inductor being manufactured by using the metal-polymer complex film for an inductor, including: a metal powder; and an amorphous epoxy resin, wherein the metal-polymer complex film is made in a film type by using a mixture where a weight ratio of the metal powder is 75˜98 wt %, so that a plurality of inductors can be simultaneously manufactured to thereby improve production efficiency and characteristic values of the inductor can be also improved.
Abstract:
A coil component includes a support member, an internal coil supported by the support member and including a plurality of coil patterns, and external electrodes connected to the internal coil and including a first layer in contact with the internal coil and a second layer disposed on the first layer. The second layer is a composite layer including a conductive material and a resin. The support member includes first and second surfaces facing the external electrodes, respectively, and one or more of at least a portion of the first surface and at least a portion of the second surface are configured as cut surfaces.
Abstract:
A coil component includes a body, an internal insulating layer disposed in the body, and a coil portion disposed on the internal insulating layer. The coil portion includes first and second coil patterns disposed on opposing surfaces of the internal insulating layer, respectively, first main and first auxiliary lead-out portions extending from the first coil pattern and respectively exposed to a front surface and one side surface of the body connected to each other, and second main and second auxiliary lead-out portions extending from the second coil pattern and respectively exposed to a rear surface and another side surface of the body connected to each other.
Abstract:
An inductor includes a body including a support member including a through-hole, an internal coil disposed on the support member, and an encapsulant encapsulating the support member and the internal coil; and an external electrode disposed on an external surface of the body and connected to the internal coil. The external electrode includes a conductive resin layer and a double conductive layer of a first conductive layer and a second conductive layer, disposed between the conductive resin layer and the internal coil.
Abstract:
An inductor includes first and second external electrodes spaced apart from each other, a substrate disposed between the first and second external electrodes and having a first surface and a second surface opposing each other, and a conductive structure electrically connected to the first and second external electrodes. The conductive structure includes a first conductive pattern disposed on the first surface of the substrate, a second conductive pattern disposed on the second surface of the substrate, and at least one reinforcing portion. The first conductive pattern has a first side facing the first external electrode, the second conductive pattern has a second side facing the second external electrode, and the at least one reinforcing portion is electrically connected to at least one of the first and second sides and is interposed between the substrate and at least one of the first and second external electrodes.
Abstract:
A chip electronic component may be capable of improving connectivity between internal coils formed on upper and lower surfaces of an insulating substrate and preventing loss of inductance due to the areas of via pads by decreasing sizes of the outermost via electrodes and decreasing sizes of the via pad.