Abstract:
A coil electronic component is provided that includes a magnetic body including a core part and a coil wound around the core part. The core part includes metal flakes and a resin, and is formed by injection-molding. Methods of manufacturing the coil electronic component are provided. The methods include injection-molding metal flakes and a resin to prepare a cylindrical structure around which the coil is provided.
Abstract:
An inductor may include: a body, and a first and a second external electrode formed on end surfaces of the body. The body may include a coil support layer, a conductive coil formed on at least one surface of the coil support layer, a lamination part formed in a gap of the conductive coil and on an upper surface thereof, an insulating coating part formed to enclose an overall surface of the conductive coil on which the lamination part is formed, and upper and lower cover layers covering the overall surface of the conductive coil on which the insulating coating part is formed.
Abstract:
Disclosed herein is a power inductor including: an opening part penetrating through the insulating layer; an upper coil electrode pattern formed on an upper surface of the insulating layer and having a form in which it is wound around the opening part; a lower coil electrode pattern formed on a lower surface of the insulating layer and having a form in which it is wound around the opening part; and metal layers plated on a surface of the innermost pattern of the upper coil electrode pattern and a surface of the innermost pattern of the lower coil electrode pattern, wherein the metal layers plated on the surfaces of the innermost patterns of the upper and lower coil electrode patterns are extended to an inner wall of the opening part to thereby be connected to each other.
Abstract:
Disclosed herein are a power inductor in which aspect ratios of the innermost pattern and the outermost pattern are similar with those of the intermediate pattern and a manufacturing method thereof. The power inductor includes coil patterns formed on one surface or both surfaces of a core insulating layer; insulating patterns bonded to at least one of an innermost pattern and an outermost pattern of the coil patterns; metal layers plated on surfaces of the coil patterns; and an insulator covering the coil patterns including the metal layers.
Abstract:
A coil component includes a body, including a coil and a support member supporting the coil, and an external electrode disposed on an external surface of the body. The coil component includes a machined surface formed on a boundary surface between a portion of the support member, removed in the vicinity of a junction portion between the external electrode and the coil, and the remainder of the support member. A cavity, from which the portion of the support member has been removed, is filled with a magnetic material, or an insulating layer is disposed in the cavity.
Abstract:
A coil component includes a body portion including a magnetic material, and a coil portion disposed in the body part. The coil portion includes a first coil pattern layer having a planar spiral pattern, an insulating layer formed of an insulating resin embedding at least a portion of the first coil pattern layer, and a second coil pattern layer disposed on the insulating layer and having a planar spiral pattern. The insulating layer includes a core material disposed between the first and second coil pattern layers, and a thickness of a lower region of the insulating layer disposed below the core material is greater than a thickness of an upper region of the insulating layer disposed above the core material.
Abstract:
A multilayer ceramic electronic component may include first and second metal frames connected to different external electrodes of a multilayer ceramic capacitor, respectively, and disposed to be spaced apart from a mounting surface of the multilayer ceramic capacitor; and an insulating layer disposed on a surface of the multilayer ceramic capacitor opposing the mounting surface thereof.
Abstract:
An inductor may include: a body, and a first and a second external electrode formed on end surfaces of the body. The body may include a coil support layer, a conductive coil formed on at least one surface of the coil support layer, a lamination part formed in a gap of the conductive coil and on an upper surface thereof, an insulating coating part formed to enclose an overall surface of the conductive coil on which the lamination part is formed, and upper and lower cover layers covering the overall surface of the conductive coil on which the insulating coating part is formed.
Abstract:
A coil electronic component includes a magnetic body enclosing a coil part and a magnetic metal plate. The magnetic metal plate is arranged in a direction in which magnetic flux flows within the magnetic body.
Abstract:
A method of manufacturing an electronic component having high inductance (L) and an excellent quality (Q) factor and direct current (DC)-bias characteristics includes forming a magnetic body in which internal coil parts are embedded, and forming a cover part including a magnetic metal plate on at least one of upper and lower portions of the magnetic body.