Abstract:
There are provided a touch sensing device and a touchscreen apparatus. The touch sensing device includes: a node capacitor; a self-capacitor disposed between one terminal of the node capacitor and a ground; a driving circuit applying predetermined driving signals to the node capacitor and the self-capacitor; and a sensing circuit unit integrating electrical charges charged in the node capacitor and the self-capacitor, wherein the driving circuit unit applies predetermined driving signals to the node capacitor and the self-capacitor in different periods.
Abstract:
There is provided an input device including a display panel having a first region for displaying an image, a touch panel attached to the display panel and detecting a touch input, and a digitizer module attached to the display panel and detecting an electromagnetic type digitizer input, wherein the digitizer module includes a plurality of circuit units formed in a second region corresponding to an edge of the first region, and at least a portion of the plurality of circuit units operates as a circuit unit for wireless communications.
Abstract:
The present invention relates to a circuit and a method for sensing a temperature. In accordance with an embodiment of the present invention, a circuit for sensing a temperature including: a bipolar transistor unit connected to a current source to output an output voltage which is inversely proportional to temperature; a variable reference voltage unit for providing a variable reference voltage which varies according to setting; a first amplifying unit for receiving the output voltage of the bipolar transistor unit and the variable reference voltage and performing differential amplification to output the amplified voltage; and a second amplifying unit for variably amplifying a variation of the output voltage of the first amplifying unit using a feedback variable resistor is provided. Further, a method for sensing a temperature using the same is provided.
Abstract:
There is provided an apparatus for regulating an output voltage, including: a sensing circuit sensing an output voltage from a charge pump; a comparator circuit receiving the output voltage from the sensing circuit so as to compare it with a predetermined reference voltage; and a limiter circuit regulating the output voltage according to an output signal from the comparator circuit.
Abstract:
There are provided a motor and a hard disk drive including the same. The motor includes: a sleeve supporting a shaft with a lubricating fluid; and a rotor fixed to the shaft, rotating together therewith, and having a surface facing the sleeve, wherein one surface of the surface of the rotor facing the sleeve and a surface of the sleeve facing the rotor is provided with a thrust dynamic pressure groove, and the other surface of the surface of the rotor facing the sleeve and the surface of the sleeve facing the rotor is provided with an extension groove extended to the outside of the thrust dynamic pressure groove so as to partially face the thrust dynamic pressure groove.
Abstract:
A capacitance sensing apparatus includes: a driving circuit unit applying a driving signal of a first period to a node capacitor; a first integrating circuit unit integrating voltage charged in the node capacitor to generate output voltage of which a voltage level is changed twice during a second period; a buffer capacitor charged or discharged by the output voltage of the first integrating circuit unit; a second integrating circuit unit integrating voltage charged in the buffer capacitor to generate output voltage of which a voltage level is changed twice during the first period; and an amplifying unit differentially amplifying non-inverted output voltage and inverted output voltage of the second integrating circuit unit, wherein the amplifying unit amplifies voltage corresponding to a difference between the non-inverted output voltage and the inverted output voltage during a reset section of the second integrating circuit unit to generate offset information.
Abstract:
A charge pump system may include a charge pump including a plurality of boosting units boosting an input voltage input to an input terminal multiple times depending on clock signals and outputting the boosted voltage to an output terminal; and a charge pump protection circuit including a series resistor unit disposed between the output terminal and a ground and including a plurality of resistors connected to each other in series. A portion of the plurality of resistors are disposed in parallel to a portion of the plurality of boosting units.
Abstract:
Disclosed herein is a touch sensing apparatus capable of supporting hover sensing, including: a plurality of capacitance-voltage converters (C-V converters) outputting different voltage values depending on a change in capacitance of each of the sensing electrodes; a plurality of integrators integrating output voltages of each of the C-V converters; a first multiplexer multiplexing outputs of the plurality of integrators; a second multiplexer multiplexing the outputs of the plurality of integrators; a first differential amplification unit for touch sensing receiving an output of the first multiplexer and an output of the second multiplexer; a second differential amplification unit for hover sensing receiving the output of the first multiplexer and the output of the second multiplexer; and a control unit sensing a touch event or a hover event, thereby removing a common noise to accurately sense both the touch event and the hover event.
Abstract:
Disclosed herein is a touch sensing apparatus capable of supporting hover sensing, including: a plurality of capacitance-voltage converters (C-V converters) outputting different voltage values depending on a change in capacitance of each of the sensing electrodes; a plurality of integrators integrating output voltages of each of the C-V converters; a first multiplexer multiplexing outputs of the plurality of integrators; a second multiplexer multiplexing the outputs of the plurality of integrators; a first differential amplification unit for touch sensing receiving an output of the first multiplexer and an output of the second multiplexer; a second differential amplification unit for hover sensing receiving the output of the first multiplexer and the output of the second multiplexer; and a control unit sensing a touch event or a hover event, thereby removing a common noise to accurately sense both the touch event and the hover event.
Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same.The printed circuit board includes a light-blocking glass substrate; a negative photosensitive insulating layer formed on the glass substrate; and a circuit pattern formed on the glass substrate and embedded in the negative photosensitive insulating layer.