Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same.The printed circuit board includes a light-blocking glass substrate; a negative photosensitive insulating layer formed on the glass substrate; and a circuit pattern formed on the glass substrate and embedded in the negative photosensitive insulating layer.
Abstract:
Disclosed herein is a unit cell including: an internal electrode including a flat upper surface and a lower surface arranged in parallel to face each other and a plurality of internal channels having a flat lower side disposed between the upper surface and the lower surface; an interconnector seated on the upper surface of the internal electrode; an electrolyte laminated on an outer circumferential surface of the internal electrode, except for the interconnector; and an external electrode laminated on an outer circumferential surface of the electrolyte.
Abstract:
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having connection pads disposed thereon and an inactive surface disposed to oppose the active surface; a dummy chip disposed in the through-hole and spaced apart from the semiconductor chip; a second connection member disposed on the first connection member, the dummy chip, and the active surface of the semiconductor chip; and an encapsulant encapsulating at least portions of the first connection member, the dummy chip, and the inactive surface of the semiconductor chip. The first connection member and the second connection member include, respectively, redistribution layers electrically connected to the connection pads.
Abstract:
Disclosed herein are a core substrate and a method for manufacturing the same. According to a preferred embodiment of the present invention, a core substrate includes: a porous scaffold formed with a void; an insulating material formed to fill a void of the porous scaffold; and an electronic device embedded into the porous scaffold and the insulating material and having external electrodes formed on both surfaces thereof.
Abstract:
Disclosed herein is a solid oxide fuel cell assembly, including: one or more unit cell, a box-shaped housing provided in the unit cell so as to prevent fuel and air from contacting with each other; a metal plate provided with one or more penetration hole in a plate shape partitioning the housing so as to prevent fuel and air from contacting with each other; and a seal sealing a spaced gap between an outer circumferential surface of the unit cell and a penetration hole of a metal plate. The preferred embodiment of the present invention provides the reliable sealed state between the unit cell and the metal plate by using the seal formed of a sealant, a bonding material, and a sealing material.
Abstract:
A fan-out semiconductor package includes: a semiconductor chip having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the semiconductor chip; a connection member disposed on the active surface of the semiconductor chip and including a redistribution layer electrically connected to the connection pads; a passivation layer disposed on the connection member and having openings exposing at least portions of the redistribution layer; metal members disposed in the openings of the passivation layer and connected to the exposed redistribution layer; and electrical connection structures disposed on the passivation layer and connected to the metal members, wherein the electrical connection structures have heights hierarchically differentiated from one another depending on sizes of the metal members.
Abstract:
An electronic component package may include: a redistribution layer including a first insulating layer, a first conductive pattern disposed on the first insulating layer, and a first via connected to the first conductive pattern while penetrating through the first insulating layer; an electronic component disposed on the redistribution layer; and an encapsulant encapsulating the electronic component. The first via has a horizontal cross-sectional shape in which a distance between first and second edge points of the first via in a first direction passing through the center of the first via and the first and second edge points thereof is shorter than that between third and fourth edge points of the first via in a second direction perpendicular to the first direction and passing through the center of the first via and the third and fourth points thereof.
Abstract:
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having connection pads disposed thereon and an inactive surface disposed to oppose the active surface; a dummy chip disposed in the through-hole and spaced apart from the semiconductor chip; a second connection member disposed on the first connection member, the dummy chip, and the active surface of the semiconductor chip; and an encapsulant encapsulating at least portions of the first connection member, the dummy chip, and the inactive surface of the semiconductor chip. The first connection member and the second connection member include, respectively, redistribution layers electrically connected to the connection pads.
Abstract:
Disclosed herein are an electrode paste for a solid oxide fuel cell in an anode supported type in which an anode, an electrolyte layer, and a cathode are sequentially stacked, including a raw material powder, a dispersant, a binder, a solvent, and a liquid pore-forming material, a solid oxide fuel cell using the same, and a fabricating method thereof. The electrode paste for the solid oxide fuel cell may form uniform pores in the electrode and may provide high porosity.
Abstract:
A thermoelectric module includes a stack structure of a plurality of insulating layers, a plurality of thermoelectric elements formed with the insulating layer interposed therebetween and including a first-type semiconductor device, a second-type semiconductor device, a first electrode connected to the first-type semiconductor device, a second electrode connected to the second-type semiconductor device, and a connection electrode connecting the first-type and second-type semiconductor devices, and a conductive via penetrating through the insulating layer to connect thermoelectric elements adjacent to each other, among the plurality of thermoelectric elements.