Method for capacitive cancellation of tuning fork for fluid property measurements

    公开(公告)号:US11333015B2

    公开(公告)日:2022-05-17

    申请号:US16436160

    申请日:2019-06-10

    Abstract: An apparatus for determining properties of an uncharacterized downhole fluid. The apparatus comprises an oscillation driver circuit comprising an amplifier having an output and an input, a feedback loop between the output and input of an amplifier or a logic gate, an electromechanical resonator disposed within the feedback loop such that a the resonator is driven by the oscillation driver circuit, wherein a resonant frequency of the resonator defines an oscillation frequency of the oscillator circuit, and a switch device for causing the oscillator circuit to stop driving the resonator, which thereby enables observation of a decay rate of the oscillation of the electromechanical resonator within the uncharacterized fluid. The electromechanical resonator is enclosed in a conductive layer to protect the resonator against capacitive effects of the downhole fluid.

    MEASURING SOURCE ROCK POTENTIAL USING A QUANTUM ELECTRONIC SCANNER

    公开(公告)号:US20200256813A1

    公开(公告)日:2020-08-13

    申请号:US16864912

    申请日:2020-05-01

    Inventor: Sebastian Csutak

    Abstract: The present disclosure describes methods and systems for determining source rock potential in a subterranean region of a hydrocarbon reservoir. One method includes receiving, an electron spin resonance (ESR) image from an in-situ ESR scanner that is attached to a wellbore at a first subterranean location, wherein the wellbore extends into the subterranean region of the hydrocarbon reservoir; determining, a spin concentration level of a source rock in the first subterranean location based on the ESR image; and determining, the source rock potential at the first subterranean location based on the determined spin concentration level.

    NANO-LEVEL EVALUATION OF KEROGEN-RICH RESERVOIR ROCK

    公开(公告)号:US20190017947A1

    公开(公告)日:2019-01-17

    申请号:US16122649

    申请日:2018-09-05

    Abstract: Examples of nano-level evaluation of kerogen-rich reservoir rock are described. A micro-scale beam is formed from kerogen-rich reservoir rock. The beam has reservoir rock and kerogen, which has polymeric properties. A maximum dimension of the micro-scale beam is at most 1000 micrometers. A mechanical experiment that includes a tension test or a compression test is performed on the micro-scale beam. The mechanical experiment is imaged using a scanning electron microscope (SEM). A material parameter of the kerogen in the micro-scale beam is determined based on results of the mechanical experiment and images obtained responsive to the imaging. The material parameter includes a behavior of the kerogen in response to the mechanical experiment. The behavior of the kerogen can be used to determine, among other things, the energy required to break kerogen in a kerogen-rich shale to improve hydraulic fracturing efficiency.

    Measuring source rock potential using a quantum electronic scanner

    公开(公告)号:US10656108B2

    公开(公告)日:2020-05-19

    申请号:US15852324

    申请日:2017-12-22

    Inventor: Sebastian Csutak

    Abstract: The present disclosure describes methods and systems for determining source rock potential in a subterranean region of a hydrocarbon reservoir. One method includes receiving, an electron spin resonance (ESR) image from an in-situ ESR scanner that is attached to a wellbore at a first subterranean location, wherein the wellbore extends into the subterranean region of the hydrocarbon reservoir; determining, a spin concentration level of a source rock in the first subterranean location based on the ESR image; and determining, the source rock potential at the first subterranean location based on the determined spin concentration level.

    Method and device for measuring fluid properties using an electromechanical resonator

    公开(公告)号:US10317557B2

    公开(公告)日:2019-06-11

    申请号:US15228241

    申请日:2016-08-04

    Abstract: A method and device are described for making in situ measurements of the density and viscosity of downhole fluids at subterranean wells. An oscillator circuit is deployed in the well comprising an amplifier, a feedback loop, and an electromechanical resonator. The electromechanical resonator is a component in the feedback loop of the oscillator circuit, and has a resonance mode that determines the frequency of the oscillator circuit. The electromechanical resonator is also in contact with the fluid such that the density and viscosity of the fluid influence the resonant frequency and damping of the resonator. The frequency of the oscillator is measured by a microcontroller. In one embodiment, the oscillator circuit periodically stops driving the electromechanical resonator such that the oscillation decays and the rate of decay is also measured by the microcontroller. The density and viscosity of the fluid are determined from the frequency and rate of decay of the oscillation. This measurement technique provides a faster response time to fluid changes than is possible with conventional measurement methods, and the fast response time opens up new applications for downhole viscosity and density measurements, including determining PVT characteristics, phase diagrams, and flow rates.

    PHOTOACOUSTIC GAS DETECTION
    20.
    发明申请

    公开(公告)号:US20190145935A1

    公开(公告)日:2019-05-16

    申请号:US16232249

    申请日:2018-12-26

    Abstract: A downhole system includes a quartz enhanced photoacoustic spectrometer (QEPAS) configured to be positioned within a wellbore formed in a subterranean zone of a hydrocarbon formation, a sampling system coupled to the QEPAS, and a computer system connected to the QEPAS. The sampling system is configured to be positioned in the wellbore and obtain a sample of a wellbore fluid at a downhole location in the subterranean zone. The QEPAS is configured to spectroscopically scan the sample and to determine a plurality of quantities of a corresponding plurality of hydrocarbons in the same. The computer system includes one or more processors to perform operations including receiving the plurality of quantities of the plurality of hydrocarbons in the sample and determining a plurality of ratios, where each ratio is a ratio of one of the plurality of hydrocarbons with another of the plurality of hydrocarbons.

Patent Agency Ranking