Abstract:
A highly convenient electronic device used while being worn on a body is provided. The electronic device is an arm-worn electronic device including a display panel, a power storage device, a circuit, and a sealing structure. The display panel displays an image with power supplied from the power storage device. The circuit includes an antenna and charges the power storage device wirelessly. Inside the sealing structure, the display panel, the power storage device, and the circuit are provided. The sealing structure includes a portion that transmits visible light. The sealing structure can be worn on an arm or is connected to a structure body that can be worn on an arm.
Abstract:
To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
Abstract:
In order to provide a highly reliable organic EL element, a first step in which a deposition material is heated and vaporized in a deposition chamber in which the pressure is reduced and a second step in which a layer included in an EL layer is deposited in the deposition chamber are performed while exhaustion is performed and the partial pressure of water in the deposition chamber is measured with a mass spectrometer. Alternatively, the deposition chamber in the deposition apparatus includes a deposition material chamber and is connected to an exhaust mechanism. The deposition material chamber is separated from the deposition chamber by a sluice valve, includes a deposition material holding portion including a heating mechanism, and is connected to a mass spectrometer and an exhaust mechanism.
Abstract:
A display device or an electronic device with high portability and browsability is provided. A display device which includes two display panels that overlap with each other and in which the area of a portion where the two display panels overlap with each other is variable is provided. The larger the area where the two display panels overlap with each other is, the smaller the display device becomes. The first display panel includes a first region that performs display. The second display panel includes a second region that performs display, and a third region that is adjacent to the second region and transmits visible light. When the third region overlaps with the side of a surface which performs display of the first region, display can be performed using a seamless large display region.
Abstract:
A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. The display device includes a display portion and a driver circuit portion. The display portion includes a liquid crystal element, a first transistor, a scan line, and a signal line. The driver circuit portion includes a second transistor. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. Each of the scan line and the signal line is electrically connected to the first transistor. The scan line and the signal line each include a metal layer. The structure of the first transistor is different from that of the second transistor. The first transistor is electrically connected to the pixel electrode. The first transistor includes a first region connected to the pixel electrode. The pixel electrode, the common electrode, and the first region have a function of transmitting visible light. Visible light passes through the first region and the liquid crystal element and is emitted to the outside of the display device.
Abstract:
Headphones including a sound output unit, a processing unit, a memory unit, a lighting unit, and a detection unit are provided. The sound output unit is configured to output sound. The memory unit is configured to store a program. The lighting unit is configured to emit light in response to a signal supplied from the processing unit. The detection unit is configured to obtain detection information and supply a detection signal corresponding to the detection information to the processing unit. The processing unit is configured to read out the program, carry out an operation using the detection signal and the program, and supply a signal corresponding to an operation result to the lighting unit.
Abstract:
Display defects of a display device are reduced. The display quality of a display device is improved. A reliable display device is provided. A display device includes a substrate, a conductive layer over the substrate, and a transistor and a light-emitting element over the conductive layer. The transistor and the light-emitting element are each electrically insulated from the conductive layer. The transistor and the light-emitting element each overlap with the substrate with the conductive layer located therebetween. A constant potential is supplied to the conductive layer. The display device may further include a resin layer. In that case, the conductive layer overlaps with the substrate with the resin layer located therebetween. The resin layer has a thickness of more than or equal to 0.1 μm and less than or equal to 3 μm, for example. The resin layer has a 5% weight-loss temperature of lower than 400° C., for example.
Abstract:
In order to provide a highly reliable organic EL element, a first step in which a deposition material is heated and vaporized in a deposition chamber in which the pressure is reduced and a second step in which a layer included in an EL layer is deposited in the deposition chamber are performed while exhaustion is performed and the partial pressure of water in the deposition chamber is measured with a mass spectrometer. Alternatively, the deposition chamber in the deposition apparatus includes a deposition material chamber and is connected to an exhaust mechanism. The deposition material chamber is separated from the deposition chamber by a sluice valve, includes a deposition material holding portion including a heating mechanism, and is connected to a mass spectrometer and an exhaust mechanism.