Abstract:
Color filters are used for color images obtained using imaging devices such as conventional image sensors. Imaging elements with color filters are sold, and an appropriate combination of the imaging element and a lens or the like is incorporated in an electronic device. Only providing a color filter to overlap a light-receiving region of an image sensor reduces the amount of light reaching the light-receiving region. An imaging system of the present invention includes a solid-state imaging element without a color filter, a storage device, and a learning device. Since the color filter is not included, colorization is performed on obtained monochrome image data (analog data), and coloring is performed using an AI system.
Abstract:
A display device with low power consumption is provided. Furthermore, a display device in which an image is displayed in a region that can be used in a folded state is provided. The conceived display device includes a display portion that can be opened and folded, a sensing portion that senses a folded state of the display portion, and an image processing portion that generates, when the display portion is in the folded state, an image in which a black image is displayed in part of the display portion.
Abstract:
In a video voltage comparator circuit, an average of first video voltages applied to pixel electrodes of pixels in the second-half rows in a k-th frame period (k is a natural number) is compared with an average of second video voltages applied to pixel electrodes of pixels in the first-half rows in a (k+1)th frame period for each row. In an overdrive voltage switching circuit, when a difference obtained from the comparison in the video voltage comparator circuit is greater than or equal to a threshold value, the overdrive voltage in the (k+1)th frame period is switched to a first overdrive voltage, and when the difference obtained from the comparison in the video voltage comparator circuit is less than the threshold value, the overdrive voltage in the (k+1)th frame period is switched to a second overdrive voltage lower than the first overdrive voltage.
Abstract:
To suppress a loss of data in a semiconductor device. To provide a display device including a capacitor storing data, a display element performing display in accordance with the data, and switching elements connected to electrodes of the capacitor. In the display device, the voltage is held between the electrodes of the capacitor by turning the switching elements off; thus, the data can be stored even when supplying the power supply is stopped.
Abstract:
An electronic device that enables smooth communication is provided. The electronic device includes a display portion including a first camera; a second camera; and an image processing portion. The second camera is positioned in a region not overlapping with the display portion. The first camera has a function of generating a first image of a subject, and the second camera has a function of generating a second image of the subject. The image processing portion includes a generator that performs learning using training data. The training data includes an image including a person's face. The image processing portion has a function of making the first image clear when the first image is input to the generator and a function of tracking the gaze of the subject on the basis of the second image.
Abstract:
Color filters are used for color images obtained using imaging devices such as conventional image sensors. Imaging elements with color filters are sold, and an appropriate combination of the imaging element and a lens or the like is incorporated in an electronic device. Only providing a color filter to overlap a light-receiving region of an image sensor reduces the amount of light reaching the light-receiving region. An imaging system of the present invention includes a solid-state imaging element without a color filter, a storage device, and a learning device. As a selection standard for reducing the amount of learning data, in an HSV color space, saturation is used, and selection is performed so that the saturation has optimal distribution. When colorization disclosed in this specification is performed, the colorization and object highlight processing can be performed at the same time.
Abstract:
A light-emitting device in which variation in luminance of pixels is suppressed. A light-emitting device includes at least a transistor, a first wiring, a second wiring, a first switch, a second switch, a third switch, a fourth switch, a capacitor, and a light-emitting element. The first wiring and a first electrode of the capacitor are electrically connected to each other through the first switch. A second electrode of the capacitor is connected to a first terminal of the transistor. The second wiring and a gate of the transistor are electrically connected to each other through the second switch. The first electrode of the capacitor and the gate of the transistor are electrically connected to each other through the third switch. The first terminal of the transistor and an anode of the light-emitting element are electrically connected to each other through the fourth switch.
Abstract:
Transistors each include a gate electrode, a gate insulating layer over the gate electrode, an oxide semiconductor layer over the gate insulating layer, and a source electrode and a drain electrode over the oxide semiconductor layer. A driver circuit portion includes first to third wirings formed in the same step as the gate electrode, fourth to sixth wirings formed in the same step as the source electrode and the drain electrode, a seventh wiring formed in the same step as a pixel electrode, a first region where the second wiring intersects with the fifth wiring, and a second region where the third wiring intersects with the sixth wiring. The first wiring is connected to the fourth wiring through the seventh wiring. A distance between the wirings in the second region is longer than that in the first region.
Abstract:
A display device with low power consumption is provided. Furthermore, a display device in which an image is displayed in a region that can be used in a folded state is provided. The conceived display device includes a display portion that can be opened and folded, a sensing portion that senses a folded state of the display portion, and an image processing portion that generates, when the display portion is in the folded state, an image in which a black image is displayed in part of the display portion.
Abstract:
A display device with low power consumption is provided. Furthermore, a display device in which an image is displayed in a region that can be used in a folded state is provided. The conceived display device includes a display portion that can be opened and folded, a sensing portion that senses a folded state of the display portion, and an image processing portion that generates, when the display portion is in the folded state, an image in which a black image is displayed in part of the display portion.