Abstract:
A liquid crystal display device using a plastic substrate becomes required to have high resolution, high opening ratio, high reliability, or the like, with the increasing of a screen size. Besides, high productivity and cost reduction is also required. According to the present invention, a protective film 123 comprising at least one silicon nitride film, which is formed by a ratio frequency sputtering using a silicon target, is provided over an opposing substrate (a flexible substrate); sealant 112 is drawn; a liquid crystal material 114 is dropped over the opposing substrate in vacuo; and the opposing substrate is pasted to a flexible substrate 110 provided with a pixel electrode 111 and a columnar spacer 115.
Abstract:
To provide a semiconductor device in which a layer to be peeled is attached to a base having a curved surface, and a method of manufacturing the same, and more particularly, a display having a curved surface, and more specifically a light-emitting device having a light emitting element attached to a base with a curved surface. A layer to be peeled, which contains a light emitting element furnished to a substrate using a laminate of a first material layer which is a metallic layer or nitride layer, and a second material layer which is an oxide layer, is transferred onto a film, and then the film and the layer to be peeled are curved, to thereby produce a display having a curved surface.
Abstract:
A structure for preventing deteriorations of a light-emitting device and retaining sufficient capacitor elements (condenser) required by each pixel is provided. A first passivation film, a second metal layer, a flattening film, a barrier film, and a third metal layer are stacked in this order over a transistor. A side face of a first opening provided with the flattening film is covered by the barrier film, a second opening is formed inside the first opening, and a third metal layer is connected to a semiconductor via the first opening and the second opening. A capacitor element that is formed of a lamination of a semiconductor of a transistor, a gate insulating film, a gate electrode, the first passivation film, and the second metal layer is provided.
Abstract:
The present invention provides a peeling off method without giving damage to the peeled off layer, and aims at being capable of peeling off not only a peeled off layer having a small area but also a peeled off layer having a large area over the entire surface at excellent yield ratio. The metal layer or nitride layer 11 is provided on the substrate, and further, the oxide layer 12 being contact with the foregoing metal layer or nitride layer 11 is provided, and furthermore, if the lamination film formation or the heat processing of 500° C. or more in temperature is carried out, it can be easily and clearly separated in the layer or on the interface with the oxide layer 12 by the physical means.
Abstract:
It is an object of the present invention to provide a peeling method that causes no damage to a layer to be peeled and to allow not only a layer to be peeled with a small surface area but also a layer to be peeled with a large surface area to be peeled entirely. Further, it is also an object of the present invention to bond a layer to be peeled to various base materials to provide a lighter semiconductor device and a manufacturing method thereof. Particularly, it is an object to bond various elements typified by a TFT, (a thin film diode, a photoelectric conversion element comprising a PIN junction of silicon, or a silicon resistance element) to a flexible film to provide a lighter semiconductor device and a manufacturing method thereof.
Abstract:
An object of the present invention is to apply an insulating film of cure and high quality that is suitably applicable as gate insulating film and protective film to a technique that the insulating film is formed on the glass substrate under a temperature of strain point or lower, and to a semiconductor device realizing high efficiency and high reliability by using it. In a semiconductor device of the present invention, a gate insulating film of a field effect type transistor with channel length of from 0.35 to 2.5 μm in which a silicon nitride film is formed over a crystalline semiconductor film through a silicon oxide film, wherein the silicon nitride film contains hydrogen with the concentration of 1×1021/cm3 or less and has characteristic of an etching rate of 10 nm/min or less with respect to mixed solution containing an ammonium hydrogen fluoride (NH4HF2) of 7.13% and an ammonium fluoride (NH4F) of 15.4%.
Abstract:
An objective is to increase the reliability of a light emitting device structured by combining TFTs and organic light emitting elements. A TFT (1201) and an organic light emitting element (1202) are formed on the same substrate (1203) as structuring elements of a light emitting device (1200). A first insulating film (1205) which functions as a blocking layer is formed on the substrate (1203) side of the TFT (1201), and a second insulating film (1206) is formed on the opposite upper layer side as a protective film. In addition, a third insulating film (1207) which functions as a barrier film is formed on the lower layer side of the organic light emitting element (1202). The third insulating film (1207) is formed by an inorganic insulating film such as a silicon nitride film, a silicon oxynitride film, an aluminum nitride film, an aluminum oxide film, or an aluminum oxynitride film. A fourth insulating film (1208) and a partitioning layer (1209) formed on the upper layer side of the organic light emitting element (1202) are formed using similar inorganic insulating films.
Abstract:
The present invention provides a peeling off method without giving damage to the peeled off layer, and aims at being capable of peeling off not only a peeled off layer having a small area but also a peeled off layer having a large area over the entire surface at excellent yield ratio. The metal layer or nitride layer 11 is provided on the substrate, and further, the oxide layer 12 being contact with the foregoing metal layer or nitride layer 11 is provided, and furthermore, if the lamination film formation or the heat processing of 500° C. or more in temperature is carried out, it can be easily and clearly separated in the layer or on the interface with the oxide layer 12 by the physical means.
Abstract:
To realize a high-performance liquid crystal display device or light-emitting element using a plastic film. A CPU is formed over a first glass substrate and then, separated from the first substrate. A pixel portion having a light-emitting element is formed over a second glass substrate, and then, separated from the second substrate. The both are bonded to each other. Therefore, high integration can be achieved. Further, in this case, the separated layer including the CPU serves also as a sealing layer of the light-emitting element.
Abstract:
A high-quality light emitting device is provided which has a long-lasting light emitting element free from the problems of conventional ones because of a structure that allows less degradation, and a method of manufacturing the light emitting device is provided. After a bank is formed, an exposed anode surface is wiped using a PVA (polyvinyl alcohol)-based porous substance or the like to level the surface and remove dusts from the surface. An insulating film is formed between an interlayer insulating film on a TFT and the anode. Alternatively, plasma treatment is performed on the surface of the interlayer insulating film on the TFT for surface modification.