Abstract:
A buffer may include a first sensing unit configured to sense data, and a second sensing unit configured to generate equalization control signals according to outputs of the first sensing unit. The buffer may include an equalization delay compensation unit configured to compensate the equalization control signals for signal processing delay times of the equalization control signals, and generate delay-compensated equalization control signals. The buffer may include a noise removal unit configured to primarily remove noise of the output signals of the first sensing unit according to the equalization control signals, and secondarily remove noise of the output signals of the first sensing unit according to the delay-compensated equalization control signals.
Abstract:
A buffer circuit includes a power control circuit, an inverting circuit, and a voltage adjustment circuit. The power control circuit is configured to provide voltages based on an input signal and a mode signal, and the inverting circuit is configured to receive and invert the voltages to generate an output signal. The voltage adjustment circuit is configured to adjust voltage levels based on the mode signal and the output signal.
Abstract:
A dividing circuit system includes a first dividing circuit and a second dividing circuit. The first dividing circuit performs a reset operation based on a reset control signal and generates second and fourth divided clock signals. The second dividing circuit performs a reset operation based on the reset control signal and generates first and third divided clock signals.
Abstract:
An input/output circuit may include an input circuit, an amplifier circuit and a precharging circuit. The input circuit may load differential input data to setup nodes based on a data strobe clock. The amplifier circuit may compare and amplify the data that is loaded to the setup nodes and configured to output the amplified data. The precharging circuit may precharge the setup nodes based on the data strobe clock and the differential input data.
Abstract:
The present technology may include: a first logic gate coupled to an internal voltage terminal and configured to receive data and invert and output the data according to a first enable signal; and a second logic gate coupled to the internal voltage terminal and configured to invert an output of the first logic gate and to output an inverted output as a first buffer signal according to the first enable signal, and configured to compensate for a duty skew of the first buffer signal according to a level of an external voltage.
Abstract:
There are provided a data buffer and a memory system having the same. The data buffer includes first and second amplifiers configured to output data by inverting input data, the first and second amplifiers having coupled output nodes to which the output data is output, wherein both of the first and second amplifiers are activated to output the output data when the input data has a first swing level, and wherein one of the first and second amplifiers is activated to output the output data when the input data has a second swing level narrower than the first swing level.
Abstract:
A buffer circuit includes a power control circuit, an inverting circuit, and a voltage adjustment circuit. The power control circuit is configured to provide voltages based on an input signal and a mode signal, and the inverting circuit is configured to receive and invert the voltages to generate an output signal. The voltage adjustment circuit is configured to adjust voltage levels based on the mode signal and the output signal.
Abstract:
A semiconductor apparatus includes a data input buffer configured to generate write data by receiving data that is input through a data input/output unit during a write operation section and configured to generate an output level detection signal by detecting a voltage level of the data I/O unit during a read operation section.
Abstract:
A signal receiving device may include a high-speed receiving circuit, a low-speed receiving circuit, a low-speed synchronization circuit and a low-speed synchronization circuit. The high-speed receiving circuit receives an input signal and generate a high-speed received signal in a first operation mode. The high-speed synchronization circuit generates a high-speed synchronized signal to synchronize the high-speed received signal with a clock signal. The low-speed receiving circuit receives the input signal and generate a low-speed received signal in a second operation mode. The low-speed synchronization circuit generates a low-speed synchronized signal to synchronize the low-speed received signal with the clock signal. According to an operation mode, one of the high-speed synchronized signal and the low-speed synchronized signal is selected as an internal signal.
Abstract:
An impedance calibration circuit may include: a first driver having an impedance calibrated according to a first impedance control code, and configured to drive an output terminal according to first data; a second driver having an impedance calibrated according to a second impedance control code, and configured to drive the output terminal according to second data; and an impedance calibration circuit configured to calibrate the first impedance control code to a first target value set to a resistance value of an external resistor, and calibrate the second impedance control code to a second target value different from the resistance value of the external resistor.