Abstract:
A control apparatus includes an input unit and a control unit. To the input unit, a pickup image of a camera provided to an own vehicle is input. The control unit detects a mirror provided to a different vehicle that exists in front of the own vehicle from the input pickup image, detects a person from a mirror image of the detected mirror, and recognizes a state of the person from an image of the detected person. Further, the control unit performs an alerting process or a control process for the own vehicle to prevent an accident of the own vehicle or the different vehicle in accordance with the recognized state of the person.
Abstract:
Where a highly accurate image analysis is required, for example, only RAW images selected according to specified conditions are selected and transmitted to a server. There are provided an imaging unit that is mounted on a movable device, an image signal processor that generates a color image by signal processing of the RAW image which is an output of an imaging element of the imaging unit, an image analysis unit that executes analysis processing of the color image, a transmission necessity determination unit that determines transmission necessity of the RAW image to the server, and a transmission unit that transmits the RAW image to the external server according to a determination result. The transmission necessity determination unit decides the transmission necessity of the RAW image on the basis of a transmission timing control at constant intervals, imaging and signal processing parameters, an image analysis result, device information, or the like.
Abstract:
An imaging apparatus according to an embodiment includes: an imaging unit having a pixel region in which a plurality of pixels is arranged; a readout controller that controls readout of pixel signals from pixels included in the pixel region; a first unit-of-readout setting unit that sets a unit of readout as a part of the pixel region, for which the readout controller performs readout of the pixel signal; an image output unit that outputs a first image based on the pixel signal read out from the unit of readout to a subsequent stage; a second unit-of-readout controller that controls the unit of readout in which the readout controller performs readout of the pixel signal; and a recognition unit that learns training data for each of the units of readout, performs a recognition process on the pixel signal for each of the units of readout, and outputs a recognition result.
Abstract:
Methods and apparatus for image processing are provided. The method comprises receiving input of a visible-ray image and a far-infrared-ray image obtained by photographing a same subject, estimating a blur estimation result in the visible-ray image, wherein estimating a blur estimation result comprises calculating a correlation between the visible-ray image and each of a plurality of filter-applied far-infrared ray images in which a different filter is applied to the far-infrared-ray image and selecting the filter for which the calculated correlation is highest, and performing a correction process on the visible-ray image based, at least in part, on the blur estimation result to generate a corrected visible-ray image from which the blur is reduced, wherein generating the corrected visible-ray image comprises applying, to the visible ray image, an inverse filter having an inverse characteristic to a characteristic of the selected filter.
Abstract:
An image acquisition unit 341-1 acquires a polarization image and a non-polarization image indicating a peripheral area of a moving body, such as the peripheral area of a vehicle. A discrimination information generation unit 342-1 uses the polarization image acquired by the image acquisition unit 341-1 and generates analysis object discrimination information indicating a road surface or the like. An image analysis unit 344-1 uses an image of an image analysis area set on the basis of the analysis object discrimination information generated by the discrimination information generation unit 342-1 with respect to the non-polarization image acquired by the image acquisition unit 341-1, and performs a discrimination of an object, such as an obstacle on the road surface. It is possible to efficiently perform a determination of the presence of the object from the non-polarization image of the peripheral area of the moving body.
Abstract:
A damage reduction device according to an embodiment of the present technology includes an input unit, a prediction unit, a recognition unit, and a determination unit. The input unit inputs status data regarding a status in a moving direction of a moving body apparatus. The prediction unit predicts a collision with an object in the moving direction on the basis of the status data. The recognition unit recognizes whether the object includes a person. The determination unit determines, when the collision with the object is predicted and it is recognized that the object includes a person, a steering direction of the moving body apparatus in which a collision with the person is avoidable, on the basis of the status data.
Abstract:
Provided is an information processing device including a processor configured to achieve a function of collecting information indicating visual target positions from a plurality of viewpoints existing in a space, and a function of evaluating positions in the space in accordance with density of the visual target positions.
Abstract:
There is provided an image processing device including a phase calculation unit configured to calculate a phase of pixels of a 3D image projected onto a light shielding unit that limits a region seen by a left eye and a region seen by a right eye of the 3D image displayed on a display unit, and a blend processing unit configured to combine an image for the left eye with an image for the right eye for each pixel based on the phase calculated by the phase calculation unit, the image for the left eye and the image for the right eye being included in the 3D image.
Abstract:
A motion detecting section detects a change in relative position relation between a subject and an image capturing section performing a rolling shutter operation. A thinning-out setting section sets a thinning-out amount of a line thinning-out operation of the image capturing section according to the detection result obtained by the motion detecting section. A recognition processing section performs subject recognition in an image obtained by the image capturing section, by using a recognizer corresponding to the thinning-out amount set by the thinning-out setting section. The change in relative position relation is detected based on motion of a moving body on which the image capturing section is mounted, an image capturing scene, an image obtained by the image capturing section, and the like. Line thinning-out is performed during the rolling shutter operation, and the thinning-out amount is set according to the detection result obtained by the motion detecting section.
Abstract:
A damage reduction device according to an embodiment of the present technology includes an input unit, a prediction unit, a recognition unit, and a determination unit. The input unit inputs status data regarding a status in a moving direction of a moving body apparatus. The prediction unit predicts a collision with an object in the moving direction on the basis of the status data. The recognition unit recognizes whether the object includes a person. The determination unit determines, when the collision with the object is predicted and it is recognized that the object includes a person, a steering direction of the moving body apparatus in which a collision with the person is avoidable, on the basis of the status data.