Adaptive multi-stage slack borrowing for high performance error resilient computing
    13.
    发明授权
    Adaptive multi-stage slack borrowing for high performance error resilient computing 有权
    用于高性能错误弹性计算的自适应多级松弛借贷

    公开(公告)号:US08994416B2

    公开(公告)日:2015-03-31

    申请号:US14045642

    申请日:2013-10-03

    CPC classification number: H03K3/02 H03K3/0375

    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. This application presents a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.

    Abstract translation: 自适应缩放数字技术试图使系统接近定时故障,以最大限度地提高能量效率。 潜在故障的快速恢复通常是通过减慢系统时钟和/或提供剃须刀解决方案(指令重放)。这些技术会损害吞吐量。 该应用提出了一种基于动态松弛借贷提供本地原位故障恢复能力的技术。 这种技术是非侵入式的(不需要架构修改),对吞吐量影响最小。

    Memory management device, system and method

    公开(公告)号:US11257543B2

    公开(公告)日:2022-02-22

    申请号:US16894527

    申请日:2020-06-05

    Abstract: A memory management circuit stores information indicative of reliability-types of regions of a memory array. The memory management circuitry responds to a request to allocate memory in the memory array to a process by determining a request type associated with the request to allocate memory. Memory of the memory array is allocated to the process based on the request type associated with the request to allocate memory and the stored information indicative of reliability-types of regions of the memory array. The memory array may be a shared memory array. The memory array may be organized into rows and columns, and the regions of the memory array may be the rows of the memory array.

    In-memory compute array with integrated bias elements

    公开(公告)号:US11094376B2

    公开(公告)日:2021-08-17

    申请号:US16882024

    申请日:2020-05-22

    Abstract: An in-memory compute (IMC) device includes a compute array having a first plurality of cells. The compute array is arranged as a plurality of rows of cells intersecting a plurality of columns of cells. Each cell of the first plurality of cells is identifiable by its corresponding row and column. The IMC device also includes a plurality of computation engines and a plurality of bias engines. Each computation engine is respectively formed in a different one of a second plurality of cells, wherein the second plurality of cells is formed from cells of the first plurality. Each computation engine is formed at a respective row and column intersection. Each bias engine of the plurality of bias engines is arranged to computationally combine an output from at least one of the plurality of computation engines with a respective bias value.

    In-memory compute array with integrated bias elements

    公开(公告)号:US12243584B2

    公开(公告)日:2025-03-04

    申请号:US18167580

    申请日:2023-02-10

    Abstract: An in-memory compute (IMC) device includes an array of memory cells and control logic coupled to the array of memory cells. The array of memory cells is arranged as a plurality of rows of cells intersecting a plurality of columns of cells. The array of memory cells includes a first subset of memory cells forming a plurality of computational engines at intersections of rows and columns of the first subset of the array of memory cells. The array also includes a second subset of memory cells forming a plurality of bias engines. The control logic, in operation, generates control signals to control the array of memory cells to perform a plurality of IMC operations using the computational engines, store results of the plurality of IMC operations in memory cells of the array, and computationally combine results of the plurality of IMC operations with respective bias values using the bias engines.

    Bit-cell architecture based in-memory compute

    公开(公告)号:US12183424B2

    公开(公告)日:2024-12-31

    申请号:US17954060

    申请日:2022-09-27

    Abstract: A memory array includes a plurality of bit-cells arranged as a set of rows of bit-cells intersecting a plurality of columns. The memory array also includes a plurality of in-memory-compute (IMC) cells arranged as a set of rows of IMC cells intersecting the plurality of columns of the memory array. Each of the IMC cells of the memory array includes a first bit-cell having a latch, a write-bit line and a complementary write-bit line, and a second bit-cell having a latch, a write-bit line and a complementary write-bit line, wherein the write-bit line of the first bit-cell is coupled to the complementary write-bit line of the second bit-cell and the complementary write-bit line of the first bit-cell is coupled to the write-bit line of the second bit-cell.

    In-memory compute array with integrated bias elements

    公开(公告)号:US11605424B2

    公开(公告)日:2023-03-14

    申请号:US17375945

    申请日:2021-07-14

    Abstract: An in-memory compute (IMC) device includes a compute array having a first plurality of cells. The compute array is arranged as a plurality of rows of cells intersecting a plurality of columns of cells. Each cell of the first plurality of cells is identifiable by its corresponding row and column. The IMC device also includes a plurality of computation engines and a plurality of bias engines. Each computation engine is respectively formed in a different one of a second plurality of cells, wherein the second plurality of cells is formed from cells of the first plurality. Each computation engine is formed at a respective row and column intersection. Each bias engine of the plurality of bias engines is arranged to computationally combine an output from at least one of the plurality of computation engines with a respective bias value.

Patent Agency Ranking