Abstract:
A high-to-low voltage interface circuit includes a differential circuit stage with a differential amplifier circuit having inverting and non-inverting inputs coupled to first and second input pads as well as a differential output having first and second output nodes. A pair of bias amplifier stages sensitive to the common mode voltage of the differential amplifier circuit are arranged in first and second current mirror paths from the first and second input pads to the inverting/non-inverting inputs of the differential amplifier circuit, respectively. The bias amplifier stages are configured to maintain the first input pad and the second input pad of the differential circuit stage at the common mode voltage.
Abstract:
A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Abstract:
In some embodiments, a circuit for use in devices involving digital-to-analog conversion of signals includes: a capacitive digital-to-analog converter array and an amplifier. The capacitive digital-to-analog converter includes an input port for receiving a digital input signal and an output port. The amplifier includes capacitive feedback loops that include a first capacitor coupling the output of the amplifier with the input of the amplifier and a second capacitor coupled to the output port of the digital-to-analog converter array at the input of the amplifier. The circuit further includes a set of switches that include a first switch and a second switch coupled with opposed ends of the second capacitor at the input and at the output of the amplifier, respectively.
Abstract:
A circuit includes an input transistor pair with first and second input transistors, the first input transistor having a control terminal configured to receive an input signal and a cascode transistor pair including a first and second cascode transistors having a common control node. A bias circuit has a bias input configured to receive the input signal and a first bias output coupled to the common node of the first and second cascode transistors. The bias circuit includes a signal tracking circuit operating to generate the first bias output to track the input signal. A pair of load transistors are coupled to the input transistor pair and biased by a second bias output of the bias circuit.
Abstract:
An electronic circuit for amplifying signals with two components in phase quadrature, which includes: a feedback amplifier with a feedback capacitor; a switch that drives charging and discharging of the feedback capacitor; an additional capacitor; and a coupling circuit, which alternatively connects the additional capacitor in parallel to the feedback capacitor or else decouples the additional capacitor from the feedback capacitor. The switch opens at a first instant, where a first one of the two components assumes a first zero value; the coupling circuit decouples the additional capacitor from the feedback capacitor in a way synchronous with a second instant, where the first component assumes a second zero value.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
A sensing circuit includes: a follower transistor, having a control terminal; a follower terminal for connection to a load; a bias-current generator, coupled to the follower terminal; and a feedback stage, configured to control the bias-current generator as a function of an input signal on the control terminal of the follower transistor.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first buffer amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second buffer amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first buffer amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second buffer amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
A bandgap circuit includes a supply node as well as a first and second bipolar transistors having jointly coupled base terminal at a bandgap node providing a bandgap voltage. First and second current generators are coupled to the supply node and supply mirrored first and second currents, respectively, to first and second circuit nodes. A third circuit node is coupled to the first bipolar transistor via a first resistor and coupled to ground via a second resistor, respectively. The third circuit node is also coupled to the second bipolar transistor so that the second resistor is traversed by a current which is the sum of the currents through the bipolar transistors. A decoupling stage intermediate the current generators and the bipolar transistors includes first and second cascode decoupling transistors having jointly coupled control terminals receiving a bias voltage sensitive to the bandgap voltage.