Abstract:
A MEMS resonator system has a micromechanical resonant structure and an electronic processing circuit including a first resonant loop that excites a first vibrational mode of the structure and generates a first signal at a first resonance frequency. A compensation module compensates, as a function of a measurement of temperature variation, a first variation of the first resonance frequency caused by the temperature variation to generate a clock signal at a desired frequency that is stable relative to temperature. The electronic processing circuit further includes a second resonant loop, which excites a second vibrational mode of the structure and generates a second signal at a second resonance frequency. A temperature-sensing module receives the first and second signals and generates the measurement of temperature variation as a function of the first variation of the first resonance frequency and a second variation of the second resonance frequency caused by the temperature variation.
Abstract:
In an embodiment a circuit includes an inertial measurement unit configured to be oscillated via a driving signal provided by driving circuitry, a lock-in amplifier configured to receive a sensing signal from the inertial measurement unit and a reference demodulation signal which is a function of the driving signal and provide an inertial measurement signal based on the sensing signal, wherein the reference demodulation signal is affected by a variable phase error, phase meter circuitry configured to receive the driving signal and the sensing signal and provide, as a function of a phase difference between the driving signal and the sensing signal, a phase correction signal for the reference demodulation signal and a correction node configured to apply the phase correction signal to the reference demodulation signal so that, in response to the phase correction signal being applied to the reference demodulation signal, the phase error is maintained in a vicinity of a reference value.
Abstract:
In an embodiment a circuit includes an inertial measurement unit configured to be oscillated via a driving signal provided by driving circuitry, a lock-in amplifier configured to receive a sensing signal from the inertial measurement unit and a reference demodulation signal which is a function of the driving signal and provide an inertial measurement signal based on the sensing signal, wherein the reference demodulation signal is affected by a variable phase error, phase meter circuitry configured to receive the driving signal and the sensing signal and provide, as a function of a phase difference between the driving signal and the sensing signal, a phase correction signal for the reference demodulation signal and a correction node configured to apply the phase correction signal to the reference demodulation signal so that, in response to the phase correction signal being applied to the reference demodulation signal, the phase error is maintained in a vicinity of a reference value.
Abstract:
The accelerometric sensor has a suspended region, mobile with respect to a supporting structure, and a sensing assembly coupled to the suspended region and configured to detect a movement of the suspended region with respect to the supporting structure. The suspended region has a geometry variable between at least two configurations associated with respective centroids, different from each other. The suspended region is formed by a first region rotatably anchored to the supporting structure and by a second region coupled to the first region through elastic connection elements configured to allow a relative movement of the second region with respect to the first region. A driving assembly is coupled to the second region so as to control the relative movement of the latter with respect to the first region.
Abstract:
A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.
Abstract:
A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.
Abstract:
A magnetic field sensor includes a die and a current generator in the die. The current generator generates a driving current. A Lorentz force transducer is also formed in the die and coupled to the current generator to obtain measurements of a magnetic field based upon the Lorentz force. The magnetic field has a resonance frequency and the current generator drives the Lorentz force sensor with the driving current having a non-zero frequency different from the resonance frequency.
Abstract:
A magnetic-field sensor, including: a die, a current generator in the die. The current generator generating a driving current. A Lorentz force transducer also in the die and being configured to obtain measurements of magnetic field based upon the Lorentz force is coupled to the current generator. The transducer having a resonance frequency. The current generator is such that the driving current has a non-zero frequency different from the resonance frequency.