MICROELECTROMECHANICAL RESONATOR SYSTEM WITH IMPROVED STABILITY WITH RESPECT TO TEMPERATURE VARIATIONS

    公开(公告)号:US20190131952A1

    公开(公告)日:2019-05-02

    申请号:US16171885

    申请日:2018-10-26

    Abstract: A MEMS resonator system has a micromechanical resonant structure and an electronic processing circuit including a first resonant loop that excites a first vibrational mode of the structure and generates a first signal at a first resonance frequency. A compensation module compensates, as a function of a measurement of temperature variation, a first variation of the first resonance frequency caused by the temperature variation to generate a clock signal at a desired frequency that is stable relative to temperature. The electronic processing circuit further includes a second resonant loop, which excites a second vibrational mode of the structure and generates a second signal at a second resonance frequency. A temperature-sensing module receives the first and second signals and generates the measurement of temperature variation as a function of the first variation of the first resonance frequency and a second variation of the second resonance frequency caused by the temperature variation.

    Inertial measurement circuit, corresponding device and method

    公开(公告)号:US11906306B2

    公开(公告)日:2024-02-20

    申请号:US17750074

    申请日:2022-05-20

    CPC classification number: G01C19/5712 G01C19/5776

    Abstract: In an embodiment a circuit includes an inertial measurement unit configured to be oscillated via a driving signal provided by driving circuitry, a lock-in amplifier configured to receive a sensing signal from the inertial measurement unit and a reference demodulation signal which is a function of the driving signal and provide an inertial measurement signal based on the sensing signal, wherein the reference demodulation signal is affected by a variable phase error, phase meter circuitry configured to receive the driving signal and the sensing signal and provide, as a function of a phase difference between the driving signal and the sensing signal, a phase correction signal for the reference demodulation signal and a correction node configured to apply the phase correction signal to the reference demodulation signal so that, in response to the phase correction signal being applied to the reference demodulation signal, the phase error is maintained in a vicinity of a reference value.

    Inertial Measurement Circuit, Corresponding Device and Method

    公开(公告)号:US20220390234A1

    公开(公告)日:2022-12-08

    申请号:US17750074

    申请日:2022-05-20

    Abstract: In an embodiment a circuit includes an inertial measurement unit configured to be oscillated via a driving signal provided by driving circuitry, a lock-in amplifier configured to receive a sensing signal from the inertial measurement unit and a reference demodulation signal which is a function of the driving signal and provide an inertial measurement signal based on the sensing signal, wherein the reference demodulation signal is affected by a variable phase error, phase meter circuitry configured to receive the driving signal and the sensing signal and provide, as a function of a phase difference between the driving signal and the sensing signal, a phase correction signal for the reference demodulation signal and a correction node configured to apply the phase correction signal to the reference demodulation signal so that, in response to the phase correction signal being applied to the reference demodulation signal, the phase error is maintained in a vicinity of a reference value.

    MEMS triaxial magnetic sensor with improved configuration

    公开(公告)号:US10705158B2

    公开(公告)日:2020-07-07

    申请号:US16290778

    申请日:2019-03-01

    Abstract: A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.

    MEMS TRIAXIAL MAGNETIC SENSOR WITH IMPROVED CONFIGURATION

    公开(公告)号:US20180188336A1

    公开(公告)日:2018-07-05

    申请号:US15638204

    申请日:2017-06-29

    CPC classification number: G01R33/0206 G01R33/0286 G01R33/038

    Abstract: A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.

Patent Agency Ranking