Abstract:
A MEMS optical device including: a semiconductor body; a main cavity, which extends within the semiconductor body; a membrane suspended over the main cavity; a piezoelectric actuator, which is mechanically coupled to the membrane and can be electronically controlled so as to deform the membrane; a micro-lens, mechanically coupled to the membrane so as to undergo deformation following the deformation of the membrane; and a rigid optical element, which contacts the micro-lens and is arranged so that the micro-lens is interposed between the rigid optical element and the membrane. The micro-lens and the main cavity are arranged on opposite sides of the membrane.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
A method of manufacturing a magnetic-field sensor includes forming an insulating layer on a first surface of a substrate. First and second magnetoresistors are formed at different above the first surface of the substrate and are spaced apart from the first surface by different distances. The first and second magnetoresistors have respective main axes of magnetization transverse to one another, and respective secondary axes of magnetization transverse to one another. The method further includes forming a first magnetic-field generator configured to generate a first magnetic field having field lines along the main axis of magnetization of the first magnetoresistor, and forming a second magnetic-field generator configured to generate a second magnetic field having field lines along the main axis of magnetization of the second magnetoresistor.
Abstract:
An integrated magnetoresistive sensor of an AMR (Anisotropic Magneto Resistance) type, formed by a magnetoresistive strip of ferromagnetic material and having an elongated shape with a preferential magnetization direction. A set/reset coil has a stretch, which extends over and transversely to the magnetoresistive strip. A concentrating region, also of ferromagnetic material, extends over the stretch of the set/reset coil so as to form a magnetic circuit for the field generated by the set/reset coil during steps of refresh and maintenance of magnetization of the magnetoresistive coil.
Abstract:
A MEMS device includes a semiconductor support body having a first cavity, a membrane including a peripheral portion, fixed to the support body, and a suspended portion. A first deformable structure is at a distance from a central part of the suspended portion of the membrane and a second deformable structure is laterally offset relative to the first deformable structure towards the peripheral portion of the membrane. A projecting region is fixed under the membrane. The second deformable structure is deformable so as to translate the central part of the suspended portion of the membrane along a first direction, and the first deformable structure is deformable so as to translate the central part of the suspended portion of the membrane along a second direction.
Abstract:
A leadframe includes a die pad and a set of electrically conductive leads. A semiconductor die, having a front surface and a back surface opposed to the front surface, is arranged on the die pad with the front surface facing away from the die pad. The semiconductor die is electrically coupled to the electrically conductive leads. A package molding material is molded over the semiconductor die arranged on the die pad. A stress absorbing material contained within a cavity delimited by a peripheral wall on the front surface of the semiconductor die is positioned intermediate at least one selected portion of the front surface of the semiconductor die and the package molding material.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
An integrated magnetoresistive sensor, formed in a chip including a substrate having a surface and an insulating region covering the surface of the substrate. A magnetoresistor, of a first ferromagnetic material, is formed in the insulating region and has a sensitivity plane parallel to the surface. A concentrator of a second ferromagnetic material is formed in the substrate and has at least one arm extending in a transverse direction to the sensitivity plane. The arm has one end in contact with the magnetoresistor.
Abstract:
A magnetic-field sensor includes: a chip including a substrate having a first surface and an insulating layer covering the first surface; first and second magnetoresistors each extending into the insulating layer and having a main axis of magnetization and a secondary axis of magnetization; a first magnetic-field generator configured to generate a first magnetic field having field lines along the main axis of magnetization of the first magnetoresistor; a second magnetic-field generator configured to generate a second magnetic field having field lines along the main axis of magnetization of the second magnetoresistor. The main axes of magnetization extending transversely to each other and the secondary axes of magnetization extending transversely to each other. The first and second magnetoresistors extend into the insulating layer at a first distance and a second distance, respectively, that differ from one another, from the first surface.
Abstract:
A magnetic-field sensor includes: a chip including a substrate having a first surface and an insulating layer covering the first surface; first and second magnetoresistors each extending into the insulating layer and having a main axis of magnetization and a secondary axis of magnetization; a first magnetic-field generator configured to generate a first magnetic field having field lines along the main axis of magnetization of the first magnetoresistor; a second magnetic-field generator configured to generate a second magnetic field having field lines along the main axis of magnetization of the second magnetoresistor. The main axes of magnetization extending transversely to each other and the secondary axes of magnetization extending transversely to each other. The first and second magnetoresistors extend into the insulating layer at a first distance and a second distance, respectively, that differ from one another, from the first surface.