Abstract:
An electronic device includes: a control terminal, which extends on a first face of a substrate; a first conduction terminal, which extends in the substrate at the first face of the substrate; a first insulating layer interposed between the control terminal and the first conduction terminal; a conductive path, which can be biased at a biasing voltage; and a protection element, coupled to the control terminal and to the conductive path, which forms an electrical connection between the control terminal and the conductive path and is designed to melt, and thus interrupt electrical connection, in the presence of a leakage current higher than a critical threshold between the control terminal and the first conduction terminal through the first insulating layer.
Abstract:
A MEMS sensor has at least a movable element designed to oscillate at an oscillation frequency, and an integrated measuring system coupled to the movable element to provide a measure of the oscillation frequency. The measuring system has a light source to emit a light beam towards the movable element and a light detector to receive the light beam reflected back from the movable element, including a semiconductor photodiode array. In particular, the light detector is an integrated photomultiplier having an array of single photon avalanche diodes.
Abstract:
A proximity sensor may include an array of Geiger mode avalanche photodiodes, each including an anode contact and a cathode contact. A common cathode contact may be coupled to the cathode contacts of the array to define a first connection lead at a back side of the array. A common anode collecting grid contact may be coupled to the anode contacts of the array to define a second connection lead of the array. Circuitry may be coupled with the first and second connection leads and configured to sense at least one of a dark current and a rate of current spikes generated in dark conditions, and generate an output signal representing an estimated distance of an object from the array upon the sensing.
Abstract:
An electronic device includes: a control terminal, which extends on a first face of a substrate; a first conduction terminal, which extends in the substrate at the first face of the substrate; a first insulating layer interposed between the control terminal and the first conduction terminal; a conductive path, which can be biased at a biasing voltage; and a protection element, coupled to the control terminal and to the conductive path, which forms an electrical connection between the control terminal and the conductive path and is designed to melt, and thus interrupt electrical connection, in the presence of a leakage current higher than a critical threshold between the control terminal and the first conduction terminal through the first insulating layer.
Abstract:
A MEMS sensor has at least a movable element designed to oscillate at an oscillation frequency, and an integrated measuring system coupled to the movable element to provide a measure of the oscillation frequency. The measuring system has a light source to emit a light beam towards the movable element and a light detector to receive the light beam reflected back from the movable element, including a semiconductor photodiode array. In particular, the light detector is an integrated photomultiplier having an array of single photon avalanche diodes.
Abstract:
An optical device for detecting a first chemical species and a second chemical species contained in a specimen, which includes: a first optical sensor, which may be optically coupled to an optical source through the specimen and is sensitive to radiation having a wavelength comprised in a first range of wavelengths; and a second optical sensor, which may be optically coupled to the optical source through the specimen and is sensitive to radiation having a wavelength comprised in a second range of wavelengths, different from the first range of wavelengths.
Abstract:
A photodetector including: a photodiode having a body made of semiconductor material delimited by a first surface, the body forming a first electrode region; a dielectric region, set on top of the first surface and delimited by a second surface; at least one channel extending within the dielectric region, starting from the second surface; and a first metallization, which is set on top of the second surface and is in electrical contact with the first electrode region.