摘要:
Provided is a method of producing a semiconductor epitaxial wafer having enhanced gettering ability. The method of producing a semiconductor epitaxial wafer includes: a first step of irradiating a surface of a semiconductor wafer with cluster ions containing carbon, hydrogen, and nitrogen as constituent elements to form a modified layer that is located in a surface portion of the semiconductor wafer and contains the constituent elements of the cluster ions as a solid solution; and a second step of forming an epitaxial layer on the modified layer of the semiconductor wafer.
摘要:
The present invention provides a method of more efficiently producing a semiconductor epitaxial wafer, which can suppress metal contamination by achieving higher gettering capability.A method of producing a semiconductor epitaxial wafer 100 according to the present invention includes a first step of irradiating a semiconductor wafer 10 with cluster ions 16 to form a modifying layer 18 formed from a constituent element of the cluster ions 16 in a surface portion 10A of the semiconductor wafer; and a second step of forming an epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer 10.
摘要:
Provided is an epitaxial silicon wafer free of epitaxial defects caused by dislocation clusters and COPs with reduced metal contamination achieved by higher gettering capability and a method of producing the epitaxial wafer. A method of producing an epitaxial silicon wafer includes a first step of irradiating a silicon wafer free of dislocation clusters and COPs with cluster ions to form a modifying layer formed from a constituent element of the cluster ions in a surface portion of the silicon wafer; and a second step of forming an epitaxial layer on the modifying layer of the silicon wafer.
摘要:
Provided is an epitaxial silicon wafer free of epitaxial defects caused by dislocation clusters and COPs with reduced metal contamination achieved by higher gettering capability and a method of producing the epitaxial wafer.A method of producing an epitaxial silicon wafer includes a first step of irradiating a silicon wafer free of dislocation clusters and COPs with cluster ions to form a modifying layer formed from a constituent element of the cluster ions in a surface portion of the silicon wafer; and a second step of forming an epitaxial layer on the modifying layer of the silicon wafer.
摘要:
Provided is a method of producing an epitaxial silicon wafer having high gettering capability resulting in even more reduced white spot defects in a back-illuminated solid-state imaging device. The method includes: a first step of irradiating a surface of a silicon wafer with cluster ions of CnHm (n=1 or 2, m=1, 2, 3, 4, or 5) generated using a Bernas ion source or an IHC ion source, thereby forming, in the silicon wafer, a modifying layer containing, as a solid solution, carbon and hydrogen that are constituent elements of the cluster ions; and a subsequent second step of forming a silicon epitaxial layer on the surface. In the first step, peaks of concentration profiles of carbon and hydrogen in the depth direction of the modifying layer are made to lie in a range of more than 150 nm and 2000 nm or less from the surface.
摘要:
Provided is a method of manufacturing an epitaxial wafer having an excellent gettering capability while suppressing formation of epitaxial defects. The method includes: a cluster ion irradiation step of irradiating a surface of a silicon wafer having a resistivity of from 0.001 Ω·cm to 0.1 Ω·cm with cluster ions containing at least carbon at a dose of from 2.0×1014/cm2 to 1.0×1016/cm2 to form, on a surface portion of the silicon wafer, a modifying layer composed of a constituent element of the cluster ions in the form of a solid solution; and an epitaxial layer forming step of forming, on the modifying layer on the silicon wafer, an epitaxial layer having a resistivity that is higher than the resistivity of the silicon wafer.
摘要:
The present invention provides a method of more efficiently producing a semiconductor epitaxial wafer, which can suppress metal contamination by achieving higher gettering capability.A method of producing a semiconductor epitaxial wafer 100 according to the present invention includes a first step of irradiating a semiconductor wafer 10 with cluster ions 16 to form a modifying layer 18 formed from a constituent element of the cluster ions 16 in a surface portion 10A of the semiconductor wafer; and a second step of forming an epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer 10.
摘要:
Provided is a semiconductor epitaxial wafer with reduced metal contamination achieved by higher gettering capability. The semiconductor epitaxial wafer includes a silicon wafer including COPs; a modifying layer formed from a certain element in the silicon wafer, in a surface portion of the silicon wafer; and an epitaxial layer on the modifying layer, wherein the full width half maximum of a concentration profile of the certain element in the depth direction of the modifying layer is 100 nm or less.
摘要:
Provided is a semiconductor epitaxial wafer having metal contamination reduced by achieving higher gettering capability, a method of producing the semiconductor epitaxial wafer, and a method of producing a solid-state image sensing device using the semiconductor epitaxial wafer. The method of producing a semiconductor epitaxial wafer 100 includes a first step of irradiating a semiconductor wafer 10 containing at least one of carbon and nitrogen with cluster ions 16 thereby forming a modifying layer 18 formed from a constituent element of the cluster ions 16 contained as a solid solution, in a surface portion of the semiconductor wafer 10; and a second step of forming a first epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer 10.
摘要:
An object is to provide a method of producing a semiconductor epitaxial wafer having higher gettering capability and a reduced haze level of the surface of a semiconductor epitaxial layer.The method of producing a semiconductor epitaxial wafer, according to the present invention includes: a first step of irradiating a semiconductor wafer 10 with cluster ions 16 thereby forming a modifying layer 18 formed from a constituent element of the cluster ions 16 contained as a solid solution, in a surface portion 10A of the semiconductor wafer; a second step of performing heat treatment for crystallinity recovery on the semiconductor wafer 10 after the first step such that the haze level of the semiconductor wafer surface portion 10A is 0.20 ppm or less; and a third step of forming an epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer after the second step.